LIEGE UNIVERSITY
 Urban \& Environmental Engineering Structural Engineering

USER'S MANUAL FOR SAFIR (version 2022) A COMPUTER PROGRAM FOR ANALYSIS OF STRUCTURES SUBJECTED TO FIRE

Part 3: Structural calculations

by
Jean-Marc Franssen* \& Thomas Gernay**

20/11/2023

* jm.franssen@uliege.be - Liege University, Liege, Belgium
** tgernay@jhu.edu - Johns Hopkins University, Baltimore, MD, U.S.A.
Table of content
Table of content 2

1. Introduction 3
1.1 Strain decomposition 3
1.2 Convergence criteria 3
2. Detailed description of the input file for structural analyses 3
SERIES 1: COMMENTS 4
SERIES 2: QUANTITY OF NODES 4
SERIES 3: QUANTITY OF DIMENSIONS 4
SERIES 4: DEGREES OF FREEDOM 4
SERIES 5: NUMBER OF CORES 5
SERIES 6: LOADS 5
SERIES 7: INCLINED SUPPORTS 6
SERIES 8: CONVERGENCE STRATEGY 6
SERIES 9: QUANTITY OF MATERIALS 7
SERIES 10: ELEMENTS 7
SERIES 11: NODES 10
SERIES 12: SUPPORTS AND IMPOSED DISPLACEMENTS 11
SERIES 12: BEAM ELEMENTS 15
SERIES 15: SOLID ELEMENTS 19
SERIES 16: SHELL ELEMENTS 21
SERIES 17: TRUSS ELEMENTS 26
SERIES 18: SPRING ELEMENTS 28
SERIES 19: OBLIQUE SUPPORTS 31
SERIES 20 (OPTIONAL): RELAXATION 34
SERIES 21: PRECISION 37
SERIES 22 (OPTIONAL): LIMITING DISPLACEMENT 37
SERIES 23: LOADS 37
SERIES 24: HYDROSTATIC LOADS 43
SERIES 25: MASS CHARACTERISTICs 45
SERIES 26: MATERIAL DESCRIPTION 47
SERIES 27: TIME DISCRETIZATION 66
SERIES 28: THERMAL ELONGATION 67
SERIES 29: OUTPUT RESULTS 67
3. Structure of the ".TEM" files used with the BEAM F. E 71
4. Structure of the ".TOR" files used with the BEAM F. E. 74
4.1 Structure of the ".TSH" files used with the SHELL F. E. 76
4.2 Instructions for introducing residual stresses in steel SHELL elements 79
4.3 Structure of the temperature files used with the TRUSS F. E. 78

1. Introduction

1.1 Strain decomposition

The stress-strain relationships in the load bearing materials are non-linear and are temperature dependent. In structures exposed to fire, the materials are subjected to initial strains ε_{i}, thermal expansions $\varepsilon_{\mathrm{th}}$ and stress related effects ε_{s}. The main hypothesis of the constitutive models in all materials in SAFIR is called strain decomposition; the stresses are caused by stress related strains, being the difference between the total strain $\varepsilon_{\text {total }}$, obtained from the nodal displacements, and the initial and thermal strains.

$$
\epsilon_{\sigma}=\varepsilon_{t o t a l}-\varepsilon_{i}-\epsilon_{t h}
$$

1.2 Convergence criteria

SAFIR uses an iterative procedure to converge on the correct solution for each time step with a certain tolerance. The precision given in the data file is a small value that must be reached at different times in SAFIR calculations to have convergence. A good precision value is dependent on the type of structure that is being analysed and on information from preliminary runs. However, if the user does not know which value to choose, a value of 0.002 can be used as a starting point. After the first run, an examination in the output of the out-of-balance forces and increments of displacement during subsequent iterations can help the user to modify the corresponding precision value to obtain an acceptable solution.

2. Detailed description of the input file for structural analyses

SERIES 1: COMMENTS

A. Multiple cards (can be 0)

As many lines as required may be introduced by the user at the beginning of the file to comment the content of the file.
B. 1 card

1 blank line to indicate that the comments are finished.

SERIES 2: QUANTITY OF NODES

1 card
NNODE, nnode

- NNODE

Command.

- nnode

Quantity of nodes of the structure.

SERIES 3: QUANTITY OF DIMENSIONS

1 card
NDIM, ndim

- NDIM

Command.

- ndim

Quantity of dimensions of the structure (quantity of global axis).

- ndim = 2 for 2D structures.
- ndim $=3$ for 3D structures.

SERIES 4: DEGREES OF FREEDOM

1 card
NDOFMAX, ndofmax

- NDOFMAX

Command.

- ndofmax

Maximum quantity of degrees of freedom per node.

- If ndim $=2$ if TRUSS elements are present, ndofmax ≥ 2
if BEAM elements are present, ndofmax ≥ 3
- If ndim $=3$ if TRUSS elements are present, ndofmax ≥ 3
if SOLID elements are present, ndofmax ≥ 3
if SHELL elements are present, ndofmax ≥ 6
if BEAM elements are present, ndofmax ≥ 7

SERIES 5: NUMBER OF CORES

1 card, optional

NCORES, ncores

- NCORES

Command.

- ncores

Quantity of cores of the CPU of the computer used by matrix solver. The default value is 1 , in which case this card may be omitted.

This card can be used to force SAFIR to use more than 1 core, if present on the computer. ncores is set to 2 if this card is not present.

SERIES 6: LOADS

A. 1 card

One line, first line of three possible line series
COMMAND1, COMMAND2

- COMMAND1 = STATIC, STATICCOLD or DYNAMIC

STATIC is used if the structure or one part of it is submitted to the fire and a static analysis is required.
STATICCOLD is used for the determination of the ultimate load bearing capacity of a structure which is not submitted to the fire, i.e., at room temperature ${ }^{1}$. DYNAMIC is used if the structure or one part of it is submitted to the fire and a dynamic analysis is required.

- COMMAND2 = PURE_NR or APPR_NR

[^0]Type of convergence procedure used during the iterations performed in each time step. The program can use a pure Newton-Raphson procedure (PURE_NR) or a approached Newton-Raphson procedure (APPR_NR)., and Experience tends to show that convergence may be faster with APPR_NR in structures that contains shell finite elements. PURE_NR may be preferred otherwise.
B. 1 card

NLOAD, nload

- NLOAD

Command.

- nload

Quantity of groups of loads. One group of loads is made of different loads of different loads, possibly of different types, that will vary with time according to the same function.
C. 1 card

HYDROST, nhydrost

- HYDROST

Command.

- nhydrost

Quantity of hydrostatic loads. Hydrostatic loads may vary as a function of time during the calculation, depending on the level of the water table. They form a separate group of loads, which is not counted in nload that appears in card B.

SERIES 7: INCLINED SUPPORTS

1 card
OBLIQUE, noblique

- OBLIQUE

Command.

- noblique

Quantity of inclined supports. Every node where a boundary condition is expressed in a local system of coordinates, instead of the global system of coordinates of the structure, is an oblique support, see Series 19.
noblique $=0$ if there is no oblique support.

SERIES 8: CONVERGENCE STRATEGY

1 card, optional

Choice of two possible settings

- COMEBACK, timestepmin
- COMEBACK

Command.

- timestepmin

Minimum value for the time step in case of comeback.

- NOCOMEBACK

Command.

NOCOMEBACK will be used if this card is not present

Notes:

If NOCOMEBACK is chosen, the simulation terminates at the first time when convergence cannot be obtained, or if an error occurs in the computational process.
If COMEBACK is chosen, the time step is divided by 2 if convergence cannot be obtained within a small number of iterations; time is then reset at the last converged point and the simulation restarts from there with the smaller time step. On the other hand, the time step is multiplied by 2 if convergence is obtained easily for a certain number of consecutive time steps, up to a maximum value which is defined in series 27

SERIES 9: QUANTITY OF MATERIALS

1 card
NMAT, nmat

- NMAT

Command.

- nmat

Quantity of different materials.
Note : if two materials have the same material law but different characteristics, it makes two different materials, e.g. S235 and S355 steel

SERIES 10: ELEMENTS

1 card
ELEMENTS
Command.

BEAM elements sub-series, present if BEAM finite elements are used in the structure
a) 1 card

BEAM, nbeam, ngeobeam

- BEAM

Command.

- nbeam

Quantity of BEAM elements in the structure.

- ngeobeam

Quantity of different groups of geometrical properties.
Note : one group of geometrical properties comprises elements that have the same materials, the same cross section and the same temperature history. One "TEM" file will be necessary to describe each of the ngeobeam groups.
b) 1 card
$\mathrm{NG}, n g$

- NG

Command.

- $n g$

Quantity of longitudinal points of integration in elements: 2 or 3.
c) 1 card

NFIBER, nfiberbeam

- NFIBER

Command.

- nfiberbeam

Quantity of longitudinal fibres in the BEAM elements (the maximum value for all the different groups of geometrical properties).

TRUSS elements sub-series, present if TRUSS finite elements are used in the structure
1 card
TRUSS, ntruss, ngeotruss

- TRUSS

Command.

- ntruss

Quantity of TRUSS elements in the structure.

- ngeotruss

Quantity of different groups of geometrical properties.
Note : one group of geometrical properties comprises elements that have the same material, the same cross sectional area and the same temperature history.

SHELL elements sub-series, present if SHELL finite elements are used in the structure
a) 1 card

SHELL, nshell, ngeoshell

- SHELL

Command.

- nshell

Quantity of SHELL elements in the structure.

- ngeoshell

Quantity of different groups of geometrical properties.
Note : one group of geometrical properties comprises elements that have the same materials, the same thickness, the same reinforcing bars and the same temperature.
b) 1 card

NGTHICK, ngshellthick

- NGTHICK

Command.

- ngshellthick

Quantity of points of integration on the thickness of the elements. Cannot be less than 2 and cannot be more than 10.
c) 1 card NREBARS, nrebarsmax

- NREBARS

Command.

- nrebarsmax

Quantity of REBAR layers in the SHELL elements. The maximum value found in all groups of geometrical properties must be given.

SOLID elements sub-series, present if SOLID finite elements are used in the structure
a) 1 card

SOLID, nsolid

- SOLID

Command.

- nsolid

Quantity of SOLID elements in the structure.
b) 1 card

NG, $n g$

- NG

Command.

- $n g$

Quantity of integration points in each direction. Valid entries are 1, 2 and 3.
SPRING elements sub-series, present if SPRING finite elements are used in the structure
1 card
SPRING, nspring

- SPRING

Command.

- nspring

Quantity of SPRING elements in the structure.

Last line of series

1 card

END_ELEM
Command.

SERIES 11: NODES

A. 1 card

COMMAND

- COMMAND = NODES

The position of the nodes will be given in a Cartesian system of coordinates.

- COMMAND = NODES_CYL

The position of the nodes will be given in a cylindrical system of coordinates. Cylindrical coordinates are transformed for the internal solution process by the following equations:
if $n d i m=2 \quad(r, \theta) \quad=>X=r \cos (\theta) ; Y=r \sin (\theta)$
if $n \operatorname{dim}=3 \quad(r, \theta, Z) \quad=>X=r \cos (\theta) ; Y=r \sin (\theta) ; Z$
Note that θ is in degrees. The transformation is made after all nodes have been read and the automatic generations and repeats have been made, see card C and D.
Several cards are then written, following the format of B, C or D, until all nnode nodes (see series 2) have been given their position.
B. 1 card for 1 node

NODE, nno, rcoordg(1,nno), ..., rcoordg(ndim,nno)

- NODE

Command.

- nno

Number of the specific node.

- rcoordg(1,nno)

First global coordinate (in meter) of node nno.

- rcoordg(ndim,nno)

Last global coordinate of node nno in the direction of the ndim global axis.
C. 1 card (optional) for automatic generation

GNODE, nno, rcoordg(1,nno), ..., rcoordg(ndim,nno)

- GNODE

This command is used for automatic equidistant generation of nodes between the previously defined node and the node nno.

- nno

Number of the specific node.

- rcoordg(1,nno)

First global coordinate (in meter) of node nno.

- rcoordg(ndim,nno)

Last global coordinate (in meter) of node nno.
D. 1 card (optional) for repeating a series of nodes REPEAT, nno, deltac(1), ..., deltac(ndim), kgene

- REPEAT

This command is used to repeat the definition of nno previously defined nodes with an increment in coordinates.

- nno

Quantity of nodes to be repeated.

- deltac(1)

Increment for the first coordinate (in meter).

- deltac(ndim)

Increment on the coordinate ndim.

- kgene

Number of times that the previous nno defined nodes must be repeated.

SERIES 12: SUPPORTS AND IMPOSED DISPLACEMENTS

A. 1 card

FIXATIONS
Command.
B. 1 card (optional) at each node where the solution follows a defined function ${ }^{2}$ of time and the reaction must be calculated BLOCK, nno, cblock(1,nno), ..., cblock(ndofmax,nno)

- BLOCK

Command.

- nno

[^1]Number of the specific node where the solution must not be calculated.

- cblock(1,nno)

Function describing the displacement for the first D.o.F at this node with respect to time. Type no if the displacement is not prescribed for this D.o.F.

- cblock(2,nno)

Function describing the displacement for the second D.o.F at this node with respect to time. Type no if the displacement is not prescribed for this D.o.F.

- cblock(ndofmax,nno)

Function describing the displacement for the last D.o.F at this node with respect to time. Type no if the displacement is not prescribed for this D.o.F.

Notes :

1) This command is used to apply supports, as fixed displacement, with the function F0 being used.
2) The next lines with the SAME commands can come only after all BLOCK commands have been entered
C. 1 card (optional) for each slave node

SAME, nno1, nno2, $\operatorname{ctrav(1),~...,~ctrav(ndofmax)~}$

- SAME

Command.

- nno1

Number of the specific slave node.

- nno2

Number of the master node.

- $\operatorname{ctrav}(1)$
- YES if the displacement is the same at node nno1 as at node nno2 for the D.o.F 1.
- NO otherwise.
- ctrav(ndofmax)
- YES if the displacement is the same at node nno1 as at node nno2 for the D.o.F ndofmax.
- NO otherwise.
D. 1 card (optional) to repeat the previous SAME command REPEAT, n, incr, $\operatorname{ctrav(1),~...,~ctrav(ndofmax)~}$
- REPEAT

Command.

- n

Number of times that the previous SAME command must be repeated.

- incr

Increment on the node numbers nno1 and nno2 of the previous SAME command.

- $\operatorname{ctrav}(1)$
- YES if the displacement is the same at node nno1 as at node nno2 for the D.o.F 1.
- No if there is no master-slave relation for this D.o.F.
- ctrav(ndofmax)
- YES if the displacement is the same at node nno1 as at node nno2 for the D.o.F ndofmax.
- No if there is no master-slave relation for this D.o.F.

E. 1 card (optional) to create master-slave relationship between all nodes that have the same coordinates

```
SAMEALL, ctrav(1), ..., ctrav(ndofmax)
```

- SAMEALL

Command. All the nodes of the structure that have the same coordinates (with a precision of $10^{-8} \mathrm{~m}$) will automatically be attributed a master-slave relationship, depending on the entries given for $\operatorname{ctrav}(i)$.

- $\operatorname{ctrav}(1)$
- YES if the solution is the same for the D.o.F 1.
- NO otherwise.
- ctrav(ndofmax)
- YES if the solution is the same for the D.o.F ndofmax.
- NO otherwise.

Note : A node cannot be defined as a slave in a relationship and as a master in another relationship. Therefore, if a given node is used in two or more relationships of slave-master, it must be defined either as the master in all these relationships, or as the slave in all these relationships.

For example, consider that nodes 1,2 and 3 , which have 7 D.o.F, coincide and that these three nodes must have the same displacement in the \mathbf{z} direction (in global axis). The following relationships are valid:

SAME	2	1	NO	NO	YES	NO	NO	NO	NO
SAME	3	1	NO	NO	YES	NO	NO	NO	NO

The following relationships are not valid :

SAME	2	1	NO	NO	YES	NO	NO	NO	NO
SAME	1	3	NO	NO	YES	NO	NO	NO	NO

F. 1 card

END_FIX
Command indicating the end of the series.

SERIES 12: BEAM ELEMENTS

Note : this series is skipped if no BEAM element is present in the structure
A. 1 card

NODOFBEAM
Command.
B. BEAM elements sub-series, one sub-series for each of the ngeobeam groups of geometrical properties
a) 1 card, file name
[cfilename]
Full name of the file where the information on this section type can be found. Usually the extension is ".TEM". File name is left justified.
b) 1 card, material translation, one line added for each different material used in the section
TRANSLATE, matl, matg

- tRANSLATE

Command.

- matl

Local number of this material in the ".TEM" file of this section type.

- matg

Global number of this material in the structure.

> Notes : matl starts from 1 for the first material in this section type. The second line is for the second local material, etc. Those lines are necessary because of the strategy used for the data files. One structure can be made of several BEAM section types, each of them being described in one ".TEM" file. In each of those ".TEM" files, the different materials are given numbers starting from 1. It is necessary to indicate at the level of the structure, which global material number corresponds to the numbers given in the "TEM" files.
c) 1 card, last line

END_TRANS
Command.
C. 1 card, BEAM elements list, in increasing order, from 1 to nbeam

ELEM, nelem, nodofbeam(1,ne), ..., nodofbeam(4,ne), itypebeam(ne)

- nelem

Number of this element.

- nodofbeam(1,nelem)

First end node of this element.

- nodofbeam(3,nelem)

Third (i.e. central) node of this element.

- nodofbeam(2,nelem)

Second end node of this element.

- nodofbeam(4,nelem)
$4^{\text {th }}$ node of this element (present only if ndim=3).
- itypebeam(nelem)

The section type of this element.
D. 1 card (optional) for automatic generation

GELEM, nelem, nodofbeam(1,nelem), ..., nodofbeam(4,nelem), itypebeam(nelem), kgene

- nelem

Number of this element.

- nodofbeam(1,nelem)

First end node of this element.

- nodofbeam(3,nelem)

Third (i.e. central) node of this element.

- nodofbeam(2,nelem)

Second end node of this element.

- nodofbeam(4,nelem)
$4^{\text {th }}$ node of this element (present only if ndim=3).
- itypebeam(nelem)

The section type of this element.

- kgene

Allows the generation from the previously defined element up to this one. kgene gives the increment on the first 3 nodes. If, ndim $=3$, The $4^{\text {th }}$ node remains the same.
E. 1 card (optional) for repeating a series of elements

REPEAT, nelem, nincr123, nincr4, nincrtype, ntimes

- nelem

The nelem previously defined elements will be repeated.

- nincr123

Increment on the nodes 1, 2 and 3.

- nincr4

Increment on the node 4 (present only if ndim = 3).

- nincrtype

Increment on the type of the element.

- ntimes

How many times these nelem elements will be repeated.

For example, the following sequence

ELEM	1	1	2	3	108	1	
GELEM	8	15	16	17	108	1	2
ELEM	9	18	19	20	108	1	
GELEM	16	32	33	34	108	1	2
ELEM	17	35	36	37	108	1	
GELEM	24	49	50	51	108	1	2
ELEM	25	52	53	54	108	1	
GELEM	32	66	67	68	108	1	2
ELEM	33	69	70	71	108	1	
GELEM	40	83	84	85	108	1	2

can be replaced by the following one

ELEM	1	1	2	3	108	1	
GELEM	8	15	16	17	108	1	2
REPEAT	8	17	0	0	4		

to generate

ELEM	NODE1	NODE 3	NODE 2	NODE 4	TYPE	LENGTH
1	1	2	3	108	1	$0.1288 \mathrm{E}+01$
2	3	4	5	108	1	$0.1288 \mathrm{E}+01$
3	5	6	7	108	1	$0.1288 \mathrm{E}+01$
4	7	8	9	108	1	$0.1288 \mathrm{E}+01$
5	9	10	11	108	1	$0.1200 \mathrm{E}+01$
6	11	12	13	108	1	$0.1200 \mathrm{E}+01$
7	13	14	15	108	1	$0.1200 \mathrm{E}+01$
8	15	16	17	108	1	$0.1200 \mathrm{E}+01$
9	18	19	20	108	1	$0.1288 \mathrm{E}+01$
10	20	21	22	108	1	$0.1288 \mathrm{E}+01$
11	22	23	24	108	1	$0.1288 \mathrm{E}+01$
12	24	25	26	108	1	$0.1288 \mathrm{E}+01$
13	26	27	28	108	1	$0.1200 \mathrm{E}+01$
14	28	29	30	108	1	$0.1200 \mathrm{E}+01$
15	30	31	32	108	1	$0.1200 \mathrm{E}+01$
16	32	33	34	108	1	$0.1200 \mathrm{E}+01$
17	35	36	37	108	1	$0.1288 \mathrm{E}+01$
18	37	38	39	108	1	$0.1288 \mathrm{E}+01$
19	39	40	41	108	1	$0.1288 \mathrm{E}+01$
20	41	42	43	108	1	$0.1288 \mathrm{E}+01$
21	43	44	45	108	1	$0.1200 \mathrm{E}+01$
22	45	46	47	108	1	$0.1200 \mathrm{E}+01$
23	47	48	49	108	1	$0.1200 \mathrm{E}+01$
24	49	50	51	108	1	$0.1200 \mathrm{E}+01$
25	52	53	54	108	1	$0.1288 \mathrm{E}+01$
23	47	48	49	108	1	$0.1200 \mathrm{E}+01$
24	49	50	51	108	1	$0.1200 \mathrm{E}+01$
25	52	53	54	108	1	$0.1288 \mathrm{E}+01$
26	54	55	56	108	1	$0.1288 \mathrm{E}+01$
27	56	57	58	108	1	$0.1288 \mathrm{E}+01$
28	58	59	60	108	1	$0.1288 \mathrm{E}+01$
29	60	61	62	108	1	$0.1200 \mathrm{E}+01$
30	62	63	64	108	1	$0.1200 \mathrm{E}+01$
31	64	65	66	108	1	$0.1200 \mathrm{E}+01$
32	66	67	68	108	1	$0.1200 \mathrm{E}+01$
33	69	70	71	108	1	$0.1288 \mathrm{E}+01$
34	71	72	73	108	1	$0.1288 \mathrm{E}+01$
35	73	74	75	108	1	$0.1288 \mathrm{E}+01$
36	75	76	77	108	1	$0.1288 \mathrm{E}+01$
37	77	78	79	108	1	$0.1200 \mathrm{E}+01$
38	79	80	81	108	1	$0.1200 \mathrm{E}+01$
39	81	82	83	108	1	$0.1200 \mathrm{E}+01$
40	83	84	85	108	1	$0.1200 \mathrm{E}+01$

SERIES 15: SOLID ELEMENTS

Note : this series is skipped if no SOLID element is present in the structure
A. 1 card

NODOFSOLID
Command.
B. 1 card,
[cfilename]
Full name of the file where the information on the temperature distribution in the structure can be found. Usually the extension is ".OUT". This file is the result of a 3D thermal analysis.
C. 1 card, SOLID elements list, one line for each SOLID element

ELEM, nsl, n1, n2, n3, n4, n5, n6, n7, n8, nmat, res1, res2, res3

- ELEM

Command.

- nsl

Number of the element.

- n1

Node 1.

- n2

Node 2.

- n3

Node 3.

- n4

Node 4.

- n5

Node 5.

- n6

Node 6.

- n7

Node 7.

- n8

Node 8.

- nmat

Number of the material.

- res1

Residual stress in the element in the direction of the global axis 1.

- res2

Residual stress in the element in the direction of the global axis 2.

- res3

Residual stress in the element in the direction of the global axis 3.
D. 1 card (optional) for repeating a series of elements REPEAT, nsl, n1, ..., number

- REPEAT

Command.

- $n s l$

Quantity of elements to be repeated.

- n1

Node increment.

- number

Number of times that the nsl elements must be repeated.

Notes:

1) The last nodes are given the number 0 if the SOLID element has less than 8 nodes.
2) Only hexahedral and octahedral elements can be used in a mechanical analysis. Tetrahedral elements are not supported.

SERIES 16: SHELL ELEMENTS

Note : this series is skipped if no SHELL element is present in the structure
A. 1 card

NODOFSHELL
Command.
B. SHELL elements sub-series, one sub-series for each section type
a) 1 card, file
[cfilename]
Name of the file where the information concerning this section type is read.
Notes : the name of the ".TSH" files that describe the section heated by the HASEMI fire is, for each section type, the name of ONE of the relevant ".TSH" file. For example, [s0156_3.tsh].
The information about the re-bar layers has to be present only in this file, not in the other ".TSH" files of the same section type that describe the temperature at the other points of integration.
Consequently, all the SHELL elements of one section type have the same re-bars.
b) 1 card

THICKNESS, thickshell

- THICKNESS

Command.

- thickshell

Thickness of the structural part of this section type. All material above or below the structural part is considered as non-load bearing (insulating material, for example)
c) 1 card, optional
zo, Z0

- Z0

Command.

- Z0

Position in the local z direction of the plane that contains the nodes of the shell.
Note: If this card is absent, $Z 0=0$ is assumed.
d) 1 card

MATERIAL, mat

- MATERIAL

Command.

- mat

GLOBAL material number of this section type. This is the material of the plain section, to which layers of re-bars can be added. This material must have a plane-stress 2D constitutive model.
e) 1 card

REBARS, nbars

- REBARS

Command.

- nbars

Quantity of re-bars layers in this section type.

The following card f), g), h), i) and j) are repeated nbars times.
f) 1 card

REBARMAT, mat

- REBARMAT

Command.

- mat

Global number of the material of this layer. This material must be a 1D load bearing material.
g) 1 card

SECTION, A

- SECTION

Command.

- A

Cross sectional area of this layer (in m²/m).
h) 1 card (optional)

SIGMA_RES, sigma

- SIGMA_RES

Command.

- sigma

Initial stress of the bars in this layer $\left(\mathrm{N} / \mathrm{m}^{2}\right)$.

Notes:

1) Initial stresses can be introduced in the bars if the bars are made of steel. If not, the stress can be entered as 0 ; or this card can be omitted.
2) Positive values are given for tension in the bars.
3) This capability is used for pretensioning. The stress in the bars will be reduced during the first timestep because of the elastic shortening developing in concrete.
4) For introducing initial stresses in the material of the plain section, see Section 3.7 'Instructions for introducing residual stresses in steel SHELL elements'.
i) 1 card

LEVEL, z

- LEVEL

Command.

- z

Position of this layer in the local \mathbf{z} direction.

j) 1 card

For each bar layer, there are two methods to give the orientation of the bars in the plane of the element.

Method 1: with respect to the local system of coordinates of each element.
ANGLE, angle

- ANGLE

Command.

- angle

Angle in degrees between the local \mathbf{x} axis and the layer of rebars, see Figure 1.

Figure 1: orientation of rebars in SHELL F.E. in local axes

Method 2: with respect to the global system of coordinates of the structure.
NORMAL, n1, n2, n3

- NORMAL

Command.

- n1, n2, n3
$<N_{1} ; N_{2} ; N_{3}>$ is a vector in the global system of coordinates of the structure. The norm of the vector does not have to be 1.
The technique used is illustrated in Figure 2.

Figure 2: method of the normal

The bars have the orientation of the line which is the intersection between the SHELL element and a plane that is perpendicular to the normal.
If the norm of the vector is 0 , then the orientation of this bar layer is perpendicular, in each element, to the previous bar layer (not possible for bar layer 1).

C. 1 card, one line for each SHELL element

ELEM, nsh, n1, n2, n3, n4, itypeshell(nsh), kgene

- ELEM

Command.

- nsh

Number of the element.

- n1

Node 1.

- n2

Node 2.

- n3

Node 3.

- n4

Node 4.

- itypeshell(nsh)

Type of geometrical section.

- kgene

Automatic generation on the element number.
D. 1 card (optional) for repeating a series of elements

REPEAT, nsh, n1, number

- REPEAT

Command.

- nsh

Quantity of elements to be repeated.

- n1

Node increment.

- number

Number of times that the nsh elements must be repeated.
Example of series 16 if ngeoshell = 2

```
NODOFSHELL
walls.tsh
    THICKNESS 0.200
                Z0 0.000
        MATERIAL 1
            REBARS 2
        REBARMAT 2
            SECTION 600.E-6
                LEVEL 0.010
            NORMAL 0. 0. 1.
        REBARMAT 2
            SECTION 600.E-6
            LEVEL -0.010
            NORMAL 0. 0. 0.
slabs.tsh
    THICKNESS 0.180
            Z0 0.000
        MATERIAL 1
            REBARS 2
        REBARMAT 2
            SECTION 1200.E-6
                LEVEL -0.065
            NORMAL 1. 0. 0.
        REBARMAT 2
        SECTION 240.E-6
            LEVEL -0.050
            NORMAL 0. 0. 0.
            ELEM 1 1601 1602 1802 1801 1
            ELEM 2 1602 1603 1803 1802 1
            ELEM 3 1603 1604 1804 1803 2
```


SERIES 17: TRUSS ELEMENTS

Note : this series is skipped if no TRUSS element is present in the structure
A. 1 card

NODOFTRUSS
Command.
B. ngeotruss cards, TRUSS elements file,
one card for each different TRUSS section type used (ngt varies from 1 to ngeottruss). [cfilename], geotruss(1,ngt), geotruss(2,ngt), imattruss(ngt).

- [cfilename]

Name of the file where the temperatures concerning this section types are read.

- geotruss(1,ngt)

Cross sectional area of this section type.

- geotruss(2,ngt)

Initial stress of this section type.

- imattruss(ngt)

Global number of the material in this section type.

Notes: if [cfilename (ngt)] is left blank, then :

- This must be the case for all the section types.
- There is only one element in each ngt.
- The elements must be linked to nodes which belong to SOLID elements.
- The temperature of each TRUSS element is the average of the temperature of its 2 nodes, calculated with SOLID elements.
C. 1 card, TRUSS elements list

ELEM, ntr, nodottruss(1,ntr), nodoftruss(2,ntr), igeotruss(ntr)

- ELEM

Command.

- $n t r$

Number of this element.

- nodoftruss(1,ntr)

First node of this element.

- nodoftruss(2,ntr)

Second node of this element.

- igeotruss(ntr)

Number of the section type for this element.
D. 1 card (optionalal) for automatic generation GELEM, ntr, nodoftruss(1,ntr), nodoftruss(2,ntr), igeotruss(ntr), kgene

- GELEM

Command.

- ntr

Number of this element.

- nodoftruss(1,ntr)

First node of this element.

- nodoftruss(2,ntr)

Second node of this element.

- igeotruss(ntr)

Number of the section type for this element.

- kgene

Allows for automatic generation from the previously defined element to the element n tr.

SERIES 18: SPRING ELEMENTS

Note : this series is skipped if no SPRING element is present in the structure

Each SPRING element is applied on one node of the structure.
The positive direction of the spring element is always defined from the foundation to the structure, which means that, in the output, a positive force in the spring, corresponding to tension, will be pulling on the structure, whereas a negative force will push on the structure.

In 2D models, the direction of the element is defined by the angle at the foundation between the global axis \mathbf{x} and the element, in counterclockwise direction, as shown on Figure 3.

Figure 3: direction of the element, 2D models
x
In 3D models, the direction of the element is defined by a 3D vector that has the direction from the foundation to the node of the structure. This vector does not have to be normalised.

This element has no material. Its behaviour is given directly in term of a force-displacement relationship as shown on Figure 4.
The force is comprised between two limits: the upper limit FS and the lower limit FI (either positive or negative, with FS > FI).

Figure 4: force-displacement diagram of the SPRING
The slope of the elastic part is the stiffness K .

The state of the spring at time $t=0$ is defined by the initial displacement Ui and initial force Fi. The behaviour in unloading is plastic.

Note : in contradiction with the sign convention that is used in the output, the values of FS, Fl and Fi (as well as K) are positive when the spring pushes on the structure. This is by analogy with active and passive pressure when the spring is used to model a soil beside a wall or a foundation underneath a beam.

All forces from the F-u diagram will be multiplied by the area of influence area. Consequently, the stiffness is also multiplied by area.
The area of influence is there to help when the properties of the spring refer to properties of soil mechanics. The properties are then expressed in term of $\mathrm{N} / \mathrm{m}^{3}$ and these properties are all multiplied by the area of influence.
For example, in a 2D model made of a beam on an elastic foundation with uniform soil characteristics, with all elements having a length of 0.800 meters, and representing a slice of a tunnel which is $0,100 \mathrm{~m}$ wide, the area of the springs applied at the first and the last node of the beam would be 0.100 m wide $\times(0.800 \mathrm{~m}$ long $/ 2)=0.040 \mathrm{~m}^{2}$. The area of all other springs would be 0.100 m wide $\times 2 \times(0.800 \mathrm{~m}$ long $/ 2)=0.080 \mathrm{~m}^{2}$.
The load applied to the beam in N / m should then be the load for the 0.100 m slice.
In Diamond, you can plot the forces in the springs. If the beam of the example mentioned above is subjected to a uniformly distributed load, the force in the springs at the end nodes is twice smaller than for the other nodes.
You can also plot the pressure, and you will see that the pressure is uniform.
If the properties of the springs have nothing to do with soil, just put an area of $1 \mathrm{~m}^{2}$.
A. 1 card

NDFSPRING
Command.
B. 1 card, one line for each spring element

For 2D structures
ELEM, nspr, nnode, teta, FS, FI, k, area, ui, Fi

- ELEM

Command.

- nspr

Number of the element.

- nnode

Node where this element is attached.

- teta

Angle between \mathbf{x} axis and this element, in degree.

- FS

Superior limit of the force, in $\mathrm{N} / \mathrm{m}^{2}$.

- FI

Inferior limit of the force, in $\mathrm{N} / \mathrm{m}^{2}$

- K

Stiffness of the element, $\ln \mathrm{N} / \mathrm{m}^{3}$.

- area

Area of influence, in m^{2}

- ui

Displacement in the element in the configuration of reference of the structure (at time $\mathrm{t}=0$) in meters.

- Fi

Force in the element in the configuration of reference of the structure, in $\mathrm{N} / \mathrm{m}^{2}$.

For 3D structures

ELEM, nspr, nnode, cx, cy, cz, FS, FI, K, area, ui, Fi

- ELEM

Command.

- nspr

Number of the element.

- nnode

Node where this element is attached.

- $C X$

Component x of the vector that defines the direction of the element, from the foundation to the structure.

- cy

Component y of the vector that defines the direction of the element

- cz

Component z of the vector that defines the direction of the element.

- FS

Superior limit of the force.

- FI

Inferior limit of the force.

- K

Stiffness of the element.

- area

Area of influence.

- ui

Displacement in the element in the configuration of reference of the structure (at time $\mathrm{t}=0$).

- Fi

Force in the element in the configuration of reference of the structure.

SERIES 19: OBLIQUE SUPPORTS

A. 1 card, one line for each oblique support

For 2D structures
INCLIN, ni, nj

- INCLIN

Command.

- ni

Node where a boundary condition is expressed in a local system of coordinates.

- nj

Another node of the structure.
$n i$ and $n j$ define the direction in which the node ni can move. It cannot move perpendicularly to this direction.

For 3D structures

Boundary condition applied to the displacements
inCLIN, ni, nj, nk

- INCLIN

Command.

- ni

Node where a boundary condition is expressed in a local system of coordinates.

- nj, nk

2 other nodes of the structure.
$n i, n j$ and $n k$ define the plane in which the node ni can move. It cannot move out of this plane.

Boundary condition applied to the rotations
INCLIN, -ni, nj, nk

- INCLIN

Command.

- ni

Node where a boundary condition is expressed in a local system of coordinates.
A negative value has been entered for nito indicate that this line is about rotation and not displacement.

- nj, nk

2 other nodes of the structure.
$n i, n j$ and $n k$ define the plane in which the node ni can have rotations. It cannot rotate along an axis perpendicular to this plane.
B. 1 card, one line to indicate that this is the end of the series

END_INCLIN
Command.

SERIES 20 (OPTIONAL): RELAXATION

This series is used to relax the internal forces at some DOF's at the end of some elements.
The internal force F at the designated degree of freedom is computed according to the following equation:

$$
\mathrm{F}=\mathrm{K}\left(\mathrm{u}_{\mathrm{s}}-\mathrm{u}_{\mathrm{i}}\right) \leq \mathrm{F}_{\mathrm{u}}
$$

where K is a stiffness.
$u_{s} \quad$ is the displacement of the node of the structure, in the local system of coordinates of the beam.
$u_{i} \quad$ is the displacement of the internal node at the end of the element, in the local system of coordinates of the beam. This internal node must not be introduced by the user; it is added by SAFIR at the same location as the node of the structure.
$\mathrm{F}_{u} \quad$ is the maximum value that the force can reach. When this value is reached, the stiffness goes down to 0 and the value of the force remains fixed at F_{u} (plastic behaviour).
A. 1 card

RELAX_ELEM
Command.
B. 1 card

BEAMS
Command. This line indicates that at least one BEAM finite element has one or several degrees of freedom that are relaxed. It has been introduced here to allow, in future developments of SAFIR, to relax also DoF's at the ends of other element types.
C. 1 card, 1 line or 2 lines for each BEAM element that has one or several relaxed degrees of freedom.
C. 1 First line of the card. Stiffness of the relaxed degrees of freedom.

ELEM, nbm, $k(1), k(2), \ldots, k$ (idimk-1)

- ELEM

Command.

- nbm

Number of the BEAM element.

- $k(1)$

Stiffness for the relaxation at the first degree of freedom of the beam (translation along local axis \mathbf{x} of the beam at node 1).
If the value is 0 , there is no spring between the BEAM element and the node of the structure. The relaxation is total and the force at the end of the BEAM element is equal to 0 .
If the value is negative, there is no relaxation. The displacement at the end of the beam is equal to the displacement of the structure.

- $k(2)$

Stiffness at the second degree of freedom of the beam.

- k(idimk-1)

Stiffness at the last rotational degree of freedom of node 2.

Notes:

1) idimk is the quantity of degrees of freedom of the beam, 7 for 2 D beams and 15 for 3 D beams.
2) The degree of freedom of the central node cannot be relaxed.
3) If the behaviour of the relaxation is elasto-plastic (Card C. 2 will be present), the stiffnesses of this card C. 1 cannot be equal to 0 . All degrees of freedom i must either be without relaxation $(k(i)<0)$ or have a finite stiffness $(k(i)>0)$
C. 2 Optional second line of the card. Ultimate capacity of the relaxed degrees of freedom. If this line is omitted, all degrees of freedom that have been relaxed in the previous line are infinitely elastic. This card allows introducing elastic-perfectly plastic relationships.

Fu, $F(1), F(2), \ldots, F$ (idimk-1)

- Fu

Command.

- $F(1)$

Ultimate force that can be transmitted at the first degree of freedom of the beam (translation along local axis \mathbf{x} of the beam at node 1).
If this degree of freedom has not been relaxed or has been fully relaxed in the previous line, the value 0 . is given here.
If this degree of freedom has been relaxed with an elastic stiffness in the previous line, the value of the ultimate force is given here.

- $F(2)$

Ultimate force at the second degree of freedom of the beam.

- F(idimk-1)

Ultimate moment at the last rotational degree of freedom of node 2.
D. 1 card

END_BEAMS
Command.

The next commands, until command END_RELAX, are optional. They are introduced only if the mechanical properties of the springs are time dependent.
E. 1 card

TIME_RELAX, ntime

- TIME_RELAX

Command.

- ntime

Quantity of time steps for which the evolution of the properties of the springs will be given.
F. ntime cards
time, value

- time

Time (in seconds) for which the value is given.

- value

Coefficient that multiplies the mechanical characteristics (stiffness, strength) of the springs given in the ELEM commands. Typically, the value is 1. At the beginning of the fire and it decreases progressively with time.

Note :
The stiffness and the strength of the springs can be modified as a function of time only if they have finite values different from 0 .
A stiffness which is infinite because $k<0$, or a stiffness which is equal to 0 because $k=0$ in series C.1, cannot have their value modified with time.
A strength which is infinite because the series C.2 "Fu" is absent, cannot have its value modified with time.
G. 1 card

END_RELAX

SERIES 21: PRECISION

1 card

PRECISION, precision

- PRECISION

Command.

- precision

Small value that must be reached for convergence.

SERIES 22 (OPTIONAL): LIMITING DISPLACEMENT

1 card
MAX_DISPL, max_displ

- MAX_DISPL

Command.

- max_displ

Maximum value admitted for the displacements (or rotations). If this value is exceeded for an incremental displacement during iteration or for a total displacement after convergence, a COMEBACK is performed, if it has been foreseen. If not, the run is terminated.

Note : if this series is not present, max_disp/ is given the value of 10 (meters or radians).

SERIES 23: LOADS

This series is repeated nload times, see Series 6

```
Note : if nload is equal to 0, then the 2 following lines must nevertheless be present:
            LOADS
    END_LOAD
```

A. 1 card, loading

LOADS
Command.
B. 1 card, loading function

FUNCTION, cforce(nlo)

- FUNCTION

Command.

- cforce(nlo)

Function of time that will multiply the loads given in cards C . to K . This can be a SAFIR function or the name of a file (not longer than 10 characters), see User's manual of SAFIR, Part 1, Section 5.5.

C. several cards for loads applied on a node

NODELOAD, nno, load(1), load(2), ..., load(iloc)

- NODELOAD

Command.

- nno

Number of the node where loads are applied.

- load(1)

Load for degree of freedom 1.

- load(2)

Load for degree of freedom 2.

- load(iloc)

Load for degree of freedom iloc.
Note : iloc $=\operatorname{minimum}(n d o f, 6)$ where $n d o f$ is the quantity of degrees of freedom of this node (The $7^{\text {th }}$ DoF of end nodes of 3D beams cannot be loaded.
D. Several cards for uniformly distributed loads on BEAM elements, one line added for each element with a uniformly distributed load applied.
The direction of these loads is according to the global system of coordinates, and they are measured per meter in the direction of the local axis \mathbf{x} of the BEAM finite element. For example, the dead weight of a prismatic column that extends along the global axis \mathbf{z} can be described by a DISTRBEAM load in the direction of the global axis \mathbf{z}.

DISTRBEAM, nbm, trav(1), trav(2), .., trav(ndim)

- DISTRBEAM

Command.

- nbm

Number of the specific BEAM under a distributed load.

- trav(1)

Uniformly distributed load in the direction of the global axis 1 (in Newton per
meter of beam).

- trav(2)

Uniformly distributed load in the direction of the global axis 2.

- trav(3)

Uniformly distributed load in the direction of the global axis 3 (in 3D structures).
E. 1 card, loading on BEAM elements, uniformly distributed loads, (optional) GDISTRBEAM, nbm, trav(1), trav(2), ..., trav(ndim), kgene

- GDISTRBEAM

Command.

- nbm

Number of the specific BEAM under a distributed load.

- $\operatorname{trav}(1)$

Uniformly distributed load in the direction of the global axis 1.

- trav(2)

Uniformly distributed load in the direction of the global axis 2.

- trav(3)

Uniformly distributed load in the direction of the global axis 3 (in 3D structures).

- kgene

Distributed loads are generated between the previously defined element and the present element with a step on the element numbers of kgene.
F. 1 card, loading on BEAM elements, trapezoidal distributed loads in local axis, one line added for each element with a distributed load applied.
The direction of these loads is according to the local system of coordinates of the beam, and they are measured per meter in the direction of the local axis \mathbf{x} of the beam. Such load can be used, for example, to impose a wind pressure that varies in a trapezoidal manner along an inclined roof.

TRAPLOCBM, $n b m, \operatorname{trav}(1), \operatorname{trav}(2), \ldots, \operatorname{trav}\left(2^{*} n d i m\right)$

- TRAPLOCBM

Command.

- nbm

Number of the BEAM under a trapezoidal distributed load.

- $\operatorname{trav}(1)$

Distributed load in the direction of the local axis 1 at node 1 of the element.

- trav(2)

Distributed load in the direction of the local axis 2 at node 1.

- trav(3)

Distributed load in the direction of the local axis 3 at node 1 (not present if NDIM = 2).

- trav(ndim+1)

Distributed load in the direction of the local axis 1 at node 2 of the element.

- trav(ndim+2)

Distributed load in the direction of the local axis 2 at node 2.

- trav(6)
- Distributed load in the direction of the local axis 3 at node 2 (not present if NDIM = 2).

G. 1 card, loading on BEAM elements, trapezoidal distributed loads in local axis, (optional)

 GTRAPLOCBM, nbm1, nbm2, trav(1), trav(2), ..., trav(2*ndim), kgene- GTRAPLOCBM

Command.

- nbm1

Number of the first BEAM under a trapezoidal distributed load.

- nbm2

Number of the last BEAM under a trapezoidal distributed load.

- $\operatorname{trav}(1)$

Distributed load in the direction of the local axis 1 at node 1 of the element nbm1.

- trav(2)

Distributed load in the direction of the local axis 2 at node 1 of the element nbm1.

- trav(3)

Distributed load in the direction of the local axis 3 at node 1 of the element nbm1 (not present if ndim = 2).

- trav(ndim+1)

Distributed load in the direction of the local axis 1 at node 2 of the element nbm2.

- trav(ndim+2)

Distributed load in the direction of the local axis 2 at node 2 of the element nbm2.

- trav(6)
- Distributed load in the direction of the local axis 3 at node 2 of the element nbm2 (not present if ndim = 2).
- kgene

Distributed loads are generated with a step on the element numbers of kgene. The value of the trapezoidal loads at the intermediate nodes are calculated by linear interpolation based on the length of the elements.
H. 1 card, loading on BEAM elements, trapezoidal distributed loads in global axis, one line added for each element with a distributed load applied.
The direction of these loads is according to the global system of coordinates and they are measured per meter in the direction of the local axis \mathbf{x} of the beam. Such load can be used, for example, to impose the dead weight of a tapered member.

TRAPGLOBM, nbm, $\operatorname{trav}(1), \operatorname{trav}(2), \ldots, \operatorname{trav}\left(2^{*} n d i m\right)$
I. 1 card, loading on BEAM elements, trapezoidal distributed loads in local axis, (optional) GTRAPGLOBM, nbm1, nbm2, trav(1), trav(2), ..., trav(2*ndim), kgene

The format of these commands (cards H and I) is the same as the format of TRAPLOCBM and GTRAPLOCBM, except that the distributed loads are here described in the direction of the global system of coordinates.
J. 1 card, loading on SHELL elements, one line added for each element with a distributed load applied.
DISTRSH, nsh, trav(1), trav(2), trav(3)

- DISTRSH

Command.

- nsh

Number of the SHELL element under a distributed load.

- trav(1)

Uniformly distributed load in the direction of the global axis 1.

- trav(2)

Uniformly distributed load in the direction of the global axis 2.

- $\operatorname{trav}(3)$

Uniformly distributed load in the direction of the global axis 3.

K. 1 card, loading on SHELL elements (optional)

GDISTRSH, $n s h, \operatorname{trav}(1), \operatorname{trav}(2), \operatorname{trav}(3)$, kgene

- DISTRSH

Command.

- nsh

Number of the SHELL element under a distributed load.

- trav(1)

Uniformly distributed load in the direction of the global axis 1.

- trav(2)

Uniformly distributed load in the direction of the global axis 2.

- trav(3)

Uniformly distributed load in the direction of the global axis 3.

- kgene

Increment on the element number.

L. 1 card, loading end of series
 END_LOAD
 Command.

SERIES 24: HYDROSTATIC LOADS

This series is repeated nhydrost time
A. 1 card

WATERTABLE, cwatertable

- watertable

Command.

- cwatertable

Chain of (maximum 10) characters, function describing the level (in meters) of the water table, see Users manual for SAFIR 2022, Part 1, Section 5.5.
B. 1 card

SPECWEIGHT, gamma

- SPECWEIGHT

Command.

- gamma

Specific weight of the fluid, in $\mathrm{m}\left(\mathrm{N} / \mathrm{m}^{3}\right)$.
Note : The first meter in the dimension of this value represents the horizontal distance between adjacent BEAM elements. For example, if 2D frames are representing frames that are, in fact, 3 meters away in the direction perpendicular to the plane of the frame, the specific weight of water to be considered here is not $10.000 \mathrm{~N} / \mathrm{m}^{3}$, but $30.000 \mathrm{~m}\left(\mathrm{~N} / \mathrm{m}^{3}\right)$.
If the specific weight is positive, the load on each element is in the direction of the local axis \mathbf{y} of the element. It is possible to enter a negative value of the specific weight to change the direction of the load.

C. 1 card, list of the BEAM elements loaded by this hydrostatic load

HYDROBM, nbm

- HYDROBM

Command.

- nbm

Number of the element loaded by this hydrostatic load.

D. 1 card, list of the BEAM elements loaded by this hydrostatic load, automatic generation (optional)

GHYDROBM, nbm, kgene

- HYDROBM

Command.

- nbm

Number of the element loaded by this hydrostatic load.

- kgene

The elements from the previously defined element to the element nbm, with an increment of kgene, are loaded by this hydrostatic load.
E. 1 card

END_HYDRO
Command.

[^2]
SERIES 25: MASS CHARACTERISTICS

Notes:

1) This series is present only if DYNAMIC has been chosen in series 6 . If this is the case, cards A and G must be present even if there is no mass (although it does not really make sense to make a dynamic analysis if there is no mass in the model).

MASS

END_MASS
2) In SAFIR, masses and forces are totally independent. The masses introduced produce no force and the forces are not linked to any mass. Consequently, if a force of X Newton is produced by gravity, a mass of $X / 10 \mathrm{~kg}$ must normally be also introduced in the data. If a force is produced by wind, no mass has to be introduced.
3) As a consequence of the fact that mass don't create loads, mass scaling can be used to facilitate convergence.
A. 1 card

MASS
Command.
B. 1 card, concentrated mass on nodes, one line added for each concentrated mass linked to a node
M_NODE, nno, mass(1), mass(2), ..., mass(ndof)

- M_NODE

Command.

- nno

Number of the node where the mass is applied.

- mass(1)

Mass linked to degree of freedom 1.

- mass(2)

Mass linked to degree of freedom 2.

- mass(ndof)

Mass linked to degree of freedom ndof.
Notes:

1) A mass linked to a displacement is in kg . A mass linked to a rotation is in kgm .
2) Usually, a concentrated mass linked to a displacement is active in all directions. Only in some cases can a mass be inactive in a particular direction (for example, a ball laying on a horizontal surface might be active in the direction perpendicular to this surface, and not active in the directions parallel to this surface)
C. 1 card, distributed mass on BEAM elements, one line added for each BEAM element with a distributed mass applied
M_BEAM, nbm, $\operatorname{trav}(1), \operatorname{trav}(2)$

- m_BEAM

Command.

- nbm

Number of the BEAM under a distributed mass.

- trav(1)

Uniformly distributed mass applied on the BEAM element (kg / m).

- trav(2)

Rotational inertia around the longitudinal axis of the element (kgm/m). Only present if a 3D analysis is made. If the value is not known, an arbitrary value of 1 can be given.
D. 1 card, distributed mass on BEAM elements, automatic generation (optional)

GM_BEAM, nbm, $\operatorname{trav}(1), \operatorname{trav}(2)$, kgene

- GM_BEAM

Command.

- nbm

Number of the BEAM under a distributed mass.

- $\operatorname{trav}(1)$

Uniformly distributed mass applied on the BEAM element (kg / m).

- trav(2)

Rotational inertia around the longitudinal axis of the element (kgm/m). Only present if a 3D analysis is made.

- kgene

Increment on the element number. (Distributed mass are generated between the previously defined element and the present element).
E. 1 card, distributed mass on SHELL elements, one line added for each SHELL element with a distributed mass applied

```
    M_SHELL, nsh, trav(1)
```

- M_SHELL

Command.

- nsh

Number of the SHELL element under a distributed mass.

- trav(1)

Uniformly distributed mass applied on the SHELL element $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$.
F. 1 card, distributed mass on SHELL elements, automatic generation (optional) GM_SHELL, $n s h, \operatorname{trav}(1), \operatorname{trav}(2)$, kgene

- GM_SHELL

Command.

- nsh

Number of the SHELL element under a distributed mass.

- trav(1)

Uniformly distributed mass applied on the SHELL element $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$.

- kgene

Increment on the element number.
G. 1 card, mass end of series

END_MASS
Command.

SERIES 26: MATERIAL DESCRIPTION

A. 1 card

MATERIALS
Command.

Material description sub-series. One sub-series comprising card a) and b) must be entered for each of the nmat material types ($n m=1, n m a t$).
a) 1 card

CMAT
Name of the material, CMAT is replaced by one of the material names given hereafter.
b) 1 card
paracold
The values of the parameters associated with this material are introduced in the paracold vector.

INSULATION MATERIAL TYPES

If CMAT = INSULATION, USER1, USER2, USER3, USER4, USER5, X_GYPSUM, C_GYPSUM, SFRM_PROBA, no parameter is necessary because these materials do not carry any stress. In this case, the second line is a blank line.

UNIAXIAL MATERIAL TYPES

If CMAT $=$ ELASTIC (this material is valid only at $20^{\circ} \mathrm{C}$.)
paracold(1,nm) Young's modulus.
paracold(2,nm) Poisson ratio

If CMAT = BILIN (this material is valid only at $20^{\circ} \mathrm{C}$.)
paracold(1,nm) Young's modulus.
paracold(2,nm) Poisson ratio.
paracold(3,nm) Yield strength.
paracold $(4, n m) \quad$ Slope of the hardening branch.

```
BILIN
210000.E6 0.3 355.E6 21000.E6
```

If CMAT = RAMBOSGOOD (this material is valid only at $20^{\circ} \mathrm{C}$.)
paracold(1,nm) Young's modulus.
paracold(2,nm) Poisson ratio.
paracold $(3, n m) \quad I_{p}$, limit of proportionality.
paracold $(4, n m) \quad n$, exponent of the law.
paracold $(5, n m) \quad K$, factor of the law.

$$
\begin{array}{ll}
\varepsilon=\frac{\sigma}{E} & \text { for } \sigma \leq l_{p} \\
\varepsilon=\frac{\sigma}{E}+\left(\frac{\sigma-l_{p}}{K}\right)^{n} & \text { for } \sigma>l_{p}
\end{array}
$$

If CMAT = CALCON_ETC, SILCON_ETC
paracold(2,nm)
paracold(3,nm)
paracold $(4, n m) \quad$ Tensile strength (≥ 0).

The CALCON_ETC, SILCON_ETC materials take into account transient creep strain explicitly. The models are described in: Gernay T., Franssen J.M. (2012). "A formulation of the Eurocode 2 concrete model at elevated temperature that includes an explicit term for transient creep". Fire Safety Journal, 51, 1-9.

```
If CMAT = CALCONC_EN, SILCONC_EN, LWCONC_EN
    paracold(2,nm) Poisson ratio.
    paracold(3,nm) Compressive strength ( }\geq0)\mathrm{ .
    paracold(4,nm) Tensile strength ( }\geq0)\mathrm{ .
If CMAT = CALCONCEC2, SILCONCEC2
    This material is from ENV 1992-1-2 (obsolete)
    paracold(2,nm) Poisson ratio.
    paracold(3,nm) Compressive strength (\geq0).
    paracold(4,nm) Tensile strength ( }\geq0)\mathrm{ .
    paracold(5,nm) < < if peak stress strain e}\mp@subsup{\textrm{e}}{\textrm{c}1}{}=\mathrm{ minimum value (= 0.015
                                    above 600 }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ , stiffer).
                            = 0 if peak stress strain ecc1 = recommended value.
                                    > 0 if peak stress strain e}\mp@subsup{\textrm{e}}{\textrm{c}1}{}=\mathrm{ maximum value (= 0.025 above
                                    600 }\mp@subsup{}{}{\circ}\mathrm{ , more ductile).
```

If CMAT = SILHSC1ETC, SILHSC2ETC, SILHSC3ETC,CALHSC1ETC, CALHSC2ETC,
CALHSC3ETC
paracold(2,nm) Poisson ratio.
paracold $(3, n m) \quad$ Compressive strength (≥ 0).
paracold $(4, n m) \quad$ Tensile strength (≥ 0).
If CMAT = SILHSC1_EN, SILHSC2_EN, SILHSC3_EN, CALHSC1_EN, CALHSC2_EN,
CALHSC3_EN
paracold(2,nm) Poisson ratio.
paracold($3, n m$) Compressive strength (≥ 0).
paracold $(4, n m) \quad$ Tensile strength (≥ 0).
If $\mathrm{CMAT}=$ CALCONC_PR, SILCONC_PR
paracold(2,nm) Poisson ratio.
paracold $(3, n m) \quad$ Compressive strength (≥ 0).
paracold $(4, n m) \quad$ Tensile strength (≥ 0).
paracold $(5, n m) \quad$ Time at which this concrete is cast. Before and until this time, the material does not carry any stress or have any stiffness. Only the displacements that will take place after this time will induce stresses.

```
If CMAT = CALCONETCL, SILCONETCL
    paracold(2,nm) Poisson ratio.
    paracold(3,nm) Compressive strength ( }\geq0)\mathrm{ .
    Tensile strength ( }\geq0)\mathrm{ .
    % loss of compressive strength in cooling [0;1].
If CMAT = CACOPRBWE, SICOPRBWE
    paracold(2,nm) Poisson ratio.
    paracold(3,nm) Compressive strength ( }\geq0)\mathrm{ .
    paracold(4,nm) Tensile strength ( }\geq0)\mathrm{ .
    paracold(5,nm) CDF quantile of Weibull distribution for probabilistic
    compressive strength ]0;1[ .
```

These materials are similar to CALCON_ETC or SILCON_ETC but with a probabilistic temperature-dependent compressive strength according to the model in: Qureshi et al. (2020). "Probabilistic models for temperature dependent strength of steel and concrete". JSE ASCE, 146(6).

If CMAT $=$ CALCO_COLD, SILCO_COLD (these materials are valid only at $20^{\circ} \mathrm{C}$.)
paracold(2,nm) Poisson ratio.
paracold $(3, n m) \quad$ Compressive strength, f_{cm}, in $\mathrm{N} / \mathrm{m}^{2}$.
Concrete according to Eq. (3.14) of EN 1992-1-1

If CMAT = PARABCONC (this material is valid only at $20^{\circ} \mathrm{C}$.)
paracold(1,nm) Young's modulus.
paracold(2,nm) Poisson ratio.
paracold $(3, n m) \quad$ Compressive strength.
paracold $(4, n m) \quad$ Tensile strength.
paracold $(5, n m) \quad$ Strain at compressive strength.
paracold(6,nm) Ultimate strain.

If CMAT = AL6061_T6, AL6063_T6, AL5083_O, AL5083_H12 (aluminium)

```
    paracold(2,nm) fo.2
    paracold(3,nm) fo
    paracold(4,nm) {
If CMAT = SLS1.4301, SLS1.4401, SLS1.4404, SLS1.4571, SLS1.4003,
    SLS1.4462, SLS1.4311 (stainless steel)
    paracold(1,nm) Young's modulus.
    paracold(2,nm) Poisson ratio.
    paracold(3,nm) Yield strength.
    paracold(4,nm) Ultimate tensile strength.
If CMAT = STEELEC2EN
    paracold(1,nm) Young's modulus.
    paracold(2,nm) Poisson ratio.
    paracold(3,nm) Yield strength.
    paracold(4,nm) Maximum temperature for a reversible behaviour during
        cooling.
    paracold(5,nm) Rate of decrease of the residual yield strength when the
                                    maximum temperature has been greater than
                                    paracold(4,NM) [N/m2K].
    PROCESS
```

Chain of character that indicates the fabrication process of the reinforcing bar. It can be:

- HOTROLLED for hot rolled bars (columns 2, 4 and 6 in Table 3.2a of EN 1992-1-2).
- COLDWORKED for cold worked bars (columns 3, 5 and 7 in Table 3.2a of EN 1992-1-2).
CLASS
Chain of character that indicates the class of ductility of the reinforcing bars. It can be:
- CLASS_A for Class A (low) ductility.
- CLASS_B for Class B (high) ductility.
- CLASS_C for Class C (very high) ductility.

```
STEELEC2EN
210000.E6 0.3 500.E6 600. 0.3E6 COLDWORKED CLASS_C
```

```
If CMAT = STEELEC3, STEELEC3EN, STEELEC3DC, STEELEC2, PSTEELA16,
    STEEL_WPB
    paracold(1,nm) Young's modulus.
    paracold(2,nm) Poisson ratio.
    paracold(3,nm) Yield strength.
    paracold(4,nm) Maximum temperature for a reversible behaviour during
    cooling.
    paracold(5,nm) Rate of decrease of the residual yield strength when the
        maximum temperature has been greater than
        paracold(4,nm) [N/m2K].
If CMAT = STEELSL
    paracold(1,nm) Young's modulus.
    paracold(2,nm) Poisson ratio.
    paracold(3,nm) Yield strength.
    paracold(4,nm) Maximum temperature for a reversible behaviour during
        cooling.
    paracold(5,nm) Rate of decrease of the residual yield strength when the
    maximum temperature has been greater than paracold(4,nm)
    [ N/m}/\mp@subsup{m}{}{2}\textrm{K}]
    paracold(9,nm)
    paracold(10,nm) Quantity of supports of the plate where the material is
        present
    = 3 for oustand plates (flanges)
    = 4 for internal plates (webs)
```

The STEELSL material is described in the reference: Franssen, J.M., Cowez, B., Gernay, T. (2014), "Effective stress method to be used in BEAM finite elements to take local instabilities into account", Fire Safety Science 11, in Proc. of the 11th IAFSS Symposium, Christchurch, New Zealand, Feb 10-14, pp. 544-557.

If CMAT $=$ STEC3PROBA
paracold(1,nm) Young's modulus.
paracold(2,nm) Poisson ratio.
paracold $(3, n m) \quad$ Yield strength.

paracold $(4, \mathrm{~nm})$	Maximum temperature for a reversible behaviour during cooling.
paracold $(5, \mathrm{~nm})$	Rate of decrease of the residual yield strength when the maximum temperature has been greater than paracold $(4, \mathrm{~nm})$ $\left[\mathrm{N} / \mathrm{m}^{2} \mathrm{~K}\right]$.
paracold $(6, n m)$	Value of the standard normal parameter ε for the probabilistic reduction of yield strength with temperature.

The STEC3PROBA material has the same expression of stress-strain relationship as steel of Eurocodes but the reduction of yield strength with temperature follows the logistic EC3-based probabilistic model proposed in: Khorasani N.E., Gardoni P., Garlock M. (2015). "Probabilistic fire analysis: material models and evaluation of steel structural members". JSE, 141(12).

If CMAT = WOODEC5 or CMAT = WOOD2021
paracold $(1, n m) \quad$ Young's modulus.
paracold(2,nm) Poisson ratio.
paracold($3, n m$) Compressive strength.
paracold(4,nm) Tensile strength.

If CMAT = WOODPRBWE
paracold(1,nm) Young's modulus.
paracold(2,nm) Poisson ratio.
paracold($3, n m$) Compressive strength.
paracold(4,nm) Tensile strength.
paracold $(5, n m) \quad$ CDF quantile of Weibull distributions for probabilistic compressive and tensile strengths $] 0 ; 1[$.
The material is similar to WOODEC5 but with probabilistic temperature-dependent reduction factors for compressive and tensile strengths according to the model by Garcia-Castillo et al. (2022).

If CMAT = USER_STEEL
paracold $(1, n m) \quad$ Young's modulus at $20^{\circ} \mathrm{C}$.
paracold $(2, n m) \quad$ Poisson's ratio at $20^{\circ} \mathrm{C}$.
paracold $(3, n m) \quad$ Yield strength at $20^{\circ} \mathrm{C}$.
paracold $(4, n m) \quad$ critical temperature (in ${ }^{\circ} \mathrm{C}$) beyond which the yield strength is not fully recovered during cooling.
paracold(5,nm) the rate of decrease of the residual yield strength if the temperature has exceeded the critical temperature given in paracold $(4, n m)\left[\mathrm{N} / \mathrm{m}^{2} \mathrm{~K}\right]$.

This USER_STEEL material has the same expression of stress-strain relationship as steel of Eurocodes but it will behave at elevated temperatures according to the decreasing curves specified in the file "USER_STEEL.TXT" that the user has to create and locate in the same folder as the input file.
In the file "USER_STEEL.TXT", $k_{E}, k_{t y}, k_{f p}, \varepsilon_{t h}, \varepsilon_{y}, \varepsilon_{t}$ and ε_{u} are given at different temperatures. Between two temperatures, a linear interpolation is performed by SAFIR.

Note : to have the same thermal elongation as in the material STEELEC3EN for all temperatures, the first value written in the file must be equal to -1 .

Structure of the file "USER STEEL.TXT"

One line
Number_of_T:, number_of_T

- Number of T :

Command.

- number_of_T

Quantity of elevated temperatures at which the values of the reduction factors are given.

One line
T KE Kfy Kfp EPSth EPSy EPSt EPSu
One line for each temperature added to series, number_of_Tlines
$T, k_{E}(T), k_{f y}(T), k_{f p}(T), \varepsilon_{t h}(T), \varepsilon_{y}(T), \varepsilon_{t}(T), \varepsilon_{u}(T)$

- $T \quad$ Temperature at which the reduction factors are given.
- $k_{E}(T) \quad$ Reduction factor relative to the value of E (Young's modulus) at $20^{\circ} \mathrm{C}$.
- $k_{f y}(T)$ Reduction factor relative to the value of f_{y} (effective yield strength) at $20^{\circ} \mathrm{C}$.
- $k_{f_{p}}(T)$ Reduction factor relative to the value of f_{p} (limit of proportionality) at $20^{\circ} \mathrm{C}$.
- $\varepsilon_{t h}(T)$ Thermal elongation at temperature T.
- $\varepsilon_{y}(T) \quad$ Yield strain at temperature T.
- $\varepsilon_{t}(T) \quad$ Limiting strain for yield strength at temperature T.
- $\varepsilon_{u}(T) \quad$ Ultimate strain at temperature T.

Example : the following file describes a material that has user defined variations of E, f_{y} and fp , but the same thermal elongation as the steel of Eurocode 3, and the same yield strain, limiting strain and ultimate strain as Eurocode 3.

Number_of T: 4							
T	KE	Kfy	Kfp	EPSth	EPSY	EPSt	EPSu
0.	1.0	1.00	1.00	-1	0.02	0.15	0.20
200.	1.0	0.95	0.90	-1.	0.02	0.15	0.20
800.	0.1	0.15	0.10	-1.	0.02	0.15	0.20
1200.	0.0	0.00	0.00	-1.	0.02	0.15	0.20

If CMAT $=$ USER_ELAS
paracold(1,nm) Young's modulus in compression at $20^{\circ} \mathrm{C}$.
paracold $(1, n m) \quad$ Young's modulus in tension at $20^{\circ} \mathrm{C}$.
paracold $(3, n m) \quad$ Compressive strength at $20^{\circ} \mathrm{C}$.
paracold $(4, n m) \quad$ Tensile strength at $20^{\circ} \mathrm{C}$.

This USER_ELAS material is a linear elastic - brittle material, with no thermal strain. Its behaviour is linear elastic up to the defined strength, beyond which the stress drops down to zero. The stiffness and the strength can be different in tension and compression.

USER_ELAS allows the user to define his own reduction factors. USER_ELAS will behave at elevated temperatures according to the reduction factors specified in the file "USER_ELAS.TXT" that the user must create and locate in the same folder as the input file. In the file "USER_ELAS.TXT" four factors are given at different temperatures: $k_{E, c}$, $k_{E, t}, k_{f c}, k_{f t}$. Between two given temperatures, a linear interpolation is performed by SAFIR. $k_{E, c}, k_{E, t}, k_{f c}, k_{f t}$ are the reduction factors at elevated temperatures relative to the values of the modulus E in compression, the modulus E in tension, the compressive strength, and the tensile strength at $20^{\circ} \mathrm{C}$.

Structure of the file "USER ELAS.TXT"

One line
Number_of_T: , number_of_T

- Number_of_T:

Command.

- number_of_T

Quantity of elevated temperatures at which the values of the reduction factors are given.

One line
T KEc KEt Kfc Kft
One line for each temperature added to series, number_of_T lines $T, k_{E c}(T), k_{E t}(T), k_{f c}(T), k_{f t}(T)$

- Temperature at which the reduction factors are given.
- $k_{E c}(T)$ Reduction factor relative to the value of E (Young's modulus) in compression at $20^{\circ} \mathrm{C}$.
- $k_{E t}(T) \quad$ Reduction factor relative to the value of E (Young's modulus) in tension at $20^{\circ} \mathrm{C}$.
- $k_{f c}(T)$ Reduction factor relative to the value of compressive strength at $20^{\circ} \mathrm{C}$.
- $k_{f t}(T)$ Reduction factor relative to the value of tensile strength at $20^{\circ} \mathrm{C}$.

If CMAT = CALBFUP_EN, SILBFUP_EN
paracold(2, $\overline{n m}) \quad$ Poisson ratio.
paracold $(3, n m) \quad$ Compressive strength.

This material has the same expression of stress-strain relationship as concretes of Eurocodes but its behavior in tension at elevated temperatures will follow a multi-linear
behavior according to the points specified in the file "USER_BFUP.TXT" that the user must create and locate in the same folder as the input file.
In the file "USER_BFUP.TXT", a quantity of couples (ε, σ) are given at different temperatures. The user can decide on the quantity of couples (ε, σ), as well as on the quantity of temperatures. Between two defined (ε, σ), the behavior is linear.

At a given temperature,
$\varepsilon_{1}, \sigma_{1}$ define the first point in the constitutive stress-strain law of concrete in tension.
$\varepsilon_{2}, \sigma_{2}$ defines the second point. Between the points $\left(\varepsilon_{1}, \sigma_{1}\right)$ and $\left(\varepsilon_{2}, \sigma_{2}\right)$, the behavior is linear.
The user defines as many points as desired.

Notes:

1) The law is assumed to start at (0,0). Therefore, the point $(0,0)$ (origin of the stressstrain law) should not be defined in the "USER_BFUP.TXT" file.
2) The points must be defined in ascending order of strain ε (meaning that $\varepsilon_{1+1}>\varepsilon_{i}$).
3) For any strain larger than the last defined strain, the stress is set to zero. Between two temperatures, a linear interpolation is performed by SAFIR.
4) The SAFIR computation will stop if a temperature in any point in the material exceeds the highest defined temperature in "USER_BFUP.TXT".

Structure of the file "USER BFUP.TXT"

One line
Number_of_T: , number_of_T

- Number_of_T

Command.

- number_of_T

Quantity of elevated temperatures at which the values of the points defining the stress-strain law in tension are given.

One line
Number_of_EPS:, number_of_eps

- Number_of_EPS

Commañ.

- number_of_eps

Quantity n of strains at which the values of the stress are given (i.e. quantity of points in the stress-strain law in tension which are specified at a given temperature).

One line
T EPS1
SIG1 EPS2
SIG2 ... EPSn
SIGn
One line for each temperature added to series, number_of_ T lines
$T, \varepsilon_{1}(T), \sigma_{1}(T), \varepsilon_{2}(T), \sigma_{2}(T), \varepsilon_{3}(T), \sigma_{3}(T), \ldots, \varepsilon_{n}(T), \sigma_{n}(T)$

- T Temperature at which the tensile stress-strain law is defined.
- $\varepsilon_{1}(T) \quad$ First defined strain at the temperature T.
- $\sigma_{1}(T) \quad$ First defined stress at the temperature T (i.e. the one corresponding to $\varepsilon_{1}(\mathrm{~T})$).
- $\varepsilon_{n}(T) \quad$ Last defined strain at the temperature T.
- $\sigma_{n}(T) \quad$ Last defined stress at the temperature T (i.e. the one corresponding to $\left.\varepsilon_{n}(T)\right)$.

Example, the following file describes a material that has a behaviour in tension defined by 3 points in the stress-strain space (plus the origin 0,0). The behaviour at $200^{\circ} \mathrm{C}$ is plotted in Figure 5.

Number_of_T: 4						
Number_of_EPS: 3						
T	EPS1	SIG1	EPS2	SIG2	EPS3	SIG3
0.	0.0001	3.00	0.0003	0.50	0.0006	0.20
200.	0.0001	2.40	0.0003	0.40	0.0006	0.16
600.	0.0001	0.05	0.0003	0.02	0.0006	0.01
1200.	0.0001	0.05	0.0003	0.02	0.0006	0.01

Figure 5: behaviour in tension at $200^{\circ} \mathrm{C}$

If CMAT $=$ USER_CONC

paracold$(2, n m)$
Poisson ratio.
paracold($3, n m$) Compressive strength.

This USER_CONC material is a uniaxial concrete material with a behavior that can be defined by the user. It requires a file "USER_CONC.TXT" that the user must create and locate in the same folder as the input file. In this file, $k_{f c}, \varepsilon_{c 1, \theta}, \varepsilon_{c u 1, \theta}, n$ and $\varepsilon_{t h, \theta}$ are given at different temperatures. Between two temperatures, a linear interpolation is performed on these values by SAFIR.

The behavior in tension follows a multi-linear behavior according to the points specified in the file "USER_CONC.TXT". In this file, a quantity of couples (ε, σ) are given at different temperatures for the behavior in tension. The user can decide on the quantity of couples (ε, σ), as well as on the quantity of temperatures. Between two defined (ε, σ), the behavior is linear.
At a given temperature,
$\varepsilon_{1}, \sigma_{1}$ define the first point in the constitutive stress-strain law of concrete in tension.
$\varepsilon_{2}, \sigma_{2}$ defines the second point. Between the points $\left(\varepsilon_{1}, \sigma_{1}\right)$ and $\left(\varepsilon_{2}, \sigma_{2}\right)$, the behavior is linear.

The user defines as many points as desired.

Notes:

1) the law is assumed to start at (0,0). Therefore, the point $(0,0)$ (origin of the stress-stra law) should not be defined in the "USER_CONC.TXT" file.
2) The points must be defined in ascending order of strain ε (meaning that $\varepsilon_{1+1}>\varepsilon_{i}$).
3) For any strain larger than the last defined strain, the stress is set to zero.
4) Between two temperatures, a linear interpolation is performed by SAFIR.
5) the SAFIR computation will stop if a temperature in any point in the material exceeds the highest defined temperature in "USER_CONC.TXT".

In cooling, both in compression and in tension, the behavior is irreversible when the temperature cools down. In other words, the parameters of the stress-strain laws are evaluated based on the maximum temperature reached in the integration point over the history of the fire, and not on the current temperature.

```
Structure of the file "USER CONC.TXT"
One line
Number_of_T:, number_of_T
- Number_of \(T\) :
Command.
- number_of_T
Quantity of elevated temperatures at which the values of the points defining the stress-strain law in compression are given.
One line
T kfc EPSC1 EPSCU1 n EPSth
One line for each temperature added to series, number_of_T lines
\(T, k_{f c}(T), \varepsilon_{c t}(T), \varepsilon_{c u 1}(T), n(T)\)
- Temperature at which the parameters are given.
- \(k_{f c}(T)\) Reduction factor relative to the value of \(f_{c}\) (compressive strength) at \(20^{\circ} \mathrm{C}\).
- \(\varepsilon_{c 1}(T) \quad\) Strain at peak stress at temperature T.
- \(\varepsilon_{c u 1}(T)\) Ultimate compression strain at temperature T.
- \(N(T)\) Exponent of compression stress-strain law at temperature T.
- \(\varepsilon_{t h}(T)\) Thermal elongation at temperature T .
```

One line
Number_of_T: , number_of_T

- Number_of_T:

Command.

- number_of_T

Quantity of elevated temperatures at which the values of the points defining the stress-strain law in tension are given.

One line
Number_of_EPS:, number_of_eps

- Number_of_eps:

Command.

- number_of_eps

Quantity m of strains at which the values of the stress are given (i.e. quantity of points in the stress-strain law in tension which are specified at a given temperature).

One line
T EPS1 SIG1 EPS2 SIG2 ... EPSm

One line for each temperature added to series, number_of_ T lines $T, \varepsilon_{1}(T), \sigma_{1}(T), \varepsilon_{2}(T), \sigma_{2}(T), \varepsilon_{3}(T), \sigma_{3}(T), \ldots, \varepsilon_{m}(T), \sigma_{m}(T)$

- Temperature at which the tensile stress-strain law is defined.
- $\varepsilon_{1}(T) \quad$ First defined strain at the temperature T .
- $\sigma_{1}(T) \quad$ First defined stress at the temperature T (i.e., the one corresponding to $\left.\varepsilon_{1}(T)\right)$.
- $\varepsilon_{m}(T) \quad$ Last defined strain at the temperature T.
- $\sigma_{m}(T) \quad$ Last defined stress at the temperature T (i.e. the one corresponding to $\varepsilon_{m}(T)$).

The following file describes a material that has a behaviour in compression according to the Eurocode 2 part 1-2 for siliceous aggregates concrete. The material has a behaviour in tension defined by 3 points in the stress-strain space (plus the origin 0,0).

Number_of_T: 14						
T	kfc	EPSC1	EPSCU1	n	EPSth	
0.	1.000	0.0025	0.0200	3	0.0000	
20.	1.000	0.0025	0.0200	3	0.0000	
100.	1.000	0.0040	0.0225	3	0.0007	
200.	0.950	0.0055	0.0250	3	0.0018	
300.	0.850	0.0070	0.0275	3	0.0031	
400.	0.750	0.0100	0.0300	3	0.0049	
500.	0.600	0.0150	0.0325	3	0.0072	
600.	0.450	0.0250	0.0350	3	0.0102	
700.	0.300	0.0250	0.0375	3	0.0140	
800.	0.150	0.0250	0.0400	3	0.0140	
900.	0.080	0.0250	0.0425	3	0.0140	
1000.	0.040	0.0250	0.0450	3	0.0140	
1100.	0.010	0.0250	0.0475	3	0.0140	
1200.	0.000	0.0250	0.0475	3	0.0140	
Number_of_T: 4						
Number_of_EPS: 3						
T	EPS1	SIG1	EPS2	SIG2	EPS3	SIG3
0.	0.0001	3.00	0.0003	0.50	0.0006	0.20
200.	0.0001	2.40	0.0003	0.40	0.0006	0.16
600.	0.0001	0.05	0.0003	0.02	0.0006	0.01
1200.	0.0001	0.05	0.0003	0.02	0.0006	0.01

BIAXIAL PLANE STRESS MATERIAL TYPES
If CMAT = ELPLANESTR
paracold(1,nm)
paracold(2,nm)
paracold(3,nm)
Young's modulus.
Poisson ratio.
Coefficient of thermal expansion.

Elastic plane stress material law. The material is valid for steel at elevated temperature and the Young's modulus and thermal strain vary according to the Eurocode 3 part 1.2.

If CMAT $=$ PLSTRVML

paracold(1,nm) Young's modulus.
paracold $(2, n m) \quad$ Poisson ratio.
paracold $(3, n m) \quad$ Yield strength.
paracold(3,nm) Strain hardening modulus.

This model is a simplified model for steel at elevated temperature, with a bilinear equivalent stress-strain relationship. The model STEELEC32D is to be preferred if no problem of convergence is encountered. The parameters vary according to the Eurocode 3 part 1.2. (variation of the strain hardening modulus is the same as that of the Young's modulus).

If CMAT $=$ STEELEC32D
paracold(1,nm) Young's modulus.
paracold(2,nm) Poisson ratio.
paracold $(3, n m) \quad$ Yield strength.
paracold $(4, n m) \quad$ Maximum temperature for a reversible behaviour during cooling.
paracold(5,nm)
Rate of decrease of the residual yield strength when the maximum temperature has been greater than paracold $(4, n m)\left[\mathrm{N} / \mathrm{m}^{2} \mathrm{~K}\right]$.

If CMAT = USER_STL2D
paracold(1,nm) Young's modulus.
paracold(2,nm) Poisson ratio.
paracold $(3, n m) \quad$ Yield strength.
paracold $(4, n m) \quad$ Maximum temperature for a reversible behaviour during cooling.
paracold $(5, n m) \quad$ Rate of decrease of the residual yield strength when the maximum temperature has been greater than paracold $(4, \mathrm{~nm})\left[\mathrm{N} / \mathrm{m}^{2} \mathrm{~K}\right]$.

This USER_STL2D material has the same expression of stress-strain relationship as STEELEC32D but it will behave at elevated temperatures according to the decreasing curves specified in the file "USER_STEEL.TXT" that the user must create and locate in the same folder as the input file. The structure of "USER_STEEL.TXT" is the same as
described for the material USER_STEEL. The reader is referred to USER_STEEL for more information.

If CMAT = STEELEC3PS
paracold(1,nm) Young's modulus.
paracold(2,nm) Poisson ratio.
paracold $(3, n m) \quad$ Yield strength.
paracold $(4, n m) \quad$ Maximum temperature for a reversible behaviour during cooling.
paracold $(5, n m) \quad$ Rate of decrease of the residual yield strength when the maximum temperature has been greater than paracold $(4, \mathrm{~nm})\left[\mathrm{N} / \mathrm{m}^{2} \mathrm{~K}\right]$.

If CMAT = CALCOETC2D, SILCOETC2D
paracold $(2, n m) \quad$ Poisson ratio, recommended value: 0.2.
paracold $(3, n m) \quad$ Compressive strength $\left[\mathrm{N} / \mathrm{m}^{2}\right]$.
paracold $(4, n m) \quad$ Tensile strength $(\geq 0)\left[\mathrm{N} / \mathrm{m}^{2}\right]$.
paracold $(5, n m) \quad$ Strain at peak stress, recommended value: 0.0025.
paracold(18,nm) Dilatancy parameter, recommended value: 0.25 (0.20 0.30).
paracold(19,nm) Compressive ductility parameter, recommended value: 0.19 ($0.15-0.25$).
paracold $(20, n m) \quad$ Compressive damage at peak stress, recommended value: 0.30 (0.18-0.32) Condition: < 0.50.
paracold(21,nm) Tensile ductility parameter [$\mathrm{N} / \mathrm{m}^{2}$], recommended value: $400 \mathrm{~N} / \mathrm{m}^{2}$.
N.B. This parameter can be estimated by dividing the crack energy by a characteristic length. Recommended value: $100\left[\mathrm{~N} . \mathrm{m} / \mathrm{m}^{2}\right] / \sqrt{A}[\mathrm{~m}]$ where A is the area of the SHELL element.

The CALCOETC2D, SILCOETC2D materials are plastic-damage constitutive models for concrete. The models are described in: Gernay T., Millard A., Franssen J.M. (2013). "A multiaxial constitutive model for concrete in the fire situation: Theoretical formulation". Int J Solids Structures, 50(22-23), 3659-3673.

If CMAT = CALCONC2D, SILCONC2D
paracold(2,nm) Poisson ratio.
paracold($3, n m$) Compressive strength.

Bi-linear plane stress Von Mises material law. The material is valid at room temperature.

TRIAXIAL MATERIAL TYPES

```
If CMAT = STEELEC23D, STEELEC33D
    paracold(1,nm) Young's modulus.
    paracold(2,nm) Poisson ratio.
    paracold(3,nm) Yield strength.
    paracold(4,nm) Maximum temperature for a reversible behaviour during
        cooling.
    paracold(5,nm) Rate of decrease of the residual yield strength when the
        maximum temperature has been greater than
        paracold(4,nm) [N/m2K].
If CMAT = CALCOETC3D, SILCOETC3D
    paracold(2,nm) Poisson ratio.
    paracold(3,nm) Compressive strength [N/m2].
    paracold(4,nm) Tensile strength (\geq0)[N/m
    paracold(5,nm) Strain at peak stress, recommended value: 0.0025.
    paracold(18,nm) Dilatancy parameter, recommended value: 0.25 (0.20 -
        0.30).
    paracold(19,nm) Compressive ductility parameter, recommended value:
        0.19 (0.15-0.25).
    paracold(20,nm) Compressive damage at peak stress, recommended value:
        0.30 (0.18-0.32).
        Condition: < 0.50.
    paracold(21,nm) Tensile ductility parameter [N/m}\mp@subsup{\mp@code{m}}{2}{2}\mathrm{ , recommended value:
        400 N/m2.
        N.B. This parameter can be estimated by dividing the crack
        energy by a characteristic length. Recommended value:
        100 [N.m/m}\mp@subsup{}{}{2}] / / \sqrt{3}{V} [m] where V is the volume of the
        SOLID element.
```

The CALCOETC3D, SILCOETC3D materials are plastic-damage constitutive models for concrete. The models are described in: Gernay T., Millard A., Franssen J.M. (2013). "A multiaxial constitutive model for concrete in the fire situation: Theoretical formulation". Int J Solids Structures, 50(22-23), 3659-3673.

SERIES 27: TIME_DISCRETIZATION

A. 1 card

TIME Command.
B. 1 card

Two cases are possible:

1) In a dynamic analysis with COMEBACK, a single card is used because the program adjusts itself the time steps during calculation.
timestep, uptime, timestepmax

- timestep

Initial time step in seconds.

- uptime

Time for end of the calculation.

- timestepmax

Maximum value of the time step.

2) In other cases several lines can be given (maximum of idimtimestep lines, $=100$ in SAFIR2022).
One line added for each time frame added.
timestep, uptime

- timestep

Time step in seconds.

- uptime

Limit of validity of this time step.

C. 1 card, time last line

One line, end of time discretization series.
ENDTIME
Command.

SERIES 28: THERMAL ELONGATION

1 card

COMMAND

- COMMAND $=$ NOEPSTH

Thermal elongation is 0 for all materials of the structure.

- COMMAND $=\mathrm{EPSTH}$

Thermal elongation is considered in all materials of the structure.

SERIES 29: OUTPUT RESULTS

A. 1 card

OUTPUT Command.
B. 1 card

TIMEPRINT
Command.
1 card
One line added for each timeprint frame added (maximum of idimtimeprint lines) timeprint, uptimeprint

- timeprint

Time step for the output of the results.

- uptimeprint

Limit of validity of this timeprint.
1 card, timeprint last line
END_TIMEPR
Command.
C. Multiple cards (can be 0), output optional results

Add one line for each option chosen.

PRINTREACT
The reactions are written for at every node where at least one degree of freedom is restrained (by a BLOCK or a SAME command). The sum of the reactions of all nodes is also written for each degree of freedom. It allows verifying the total applied load (except when master-slave relationships are used for the supports, in which case the results may be confusing because some reactions are counted several times).

PRINTMN
Print the internal forces of

1) The BEAM elements.
2) The SOIL elements
3) The TRUSS elements

PRINTDEPL, tstart

- PRINTDEPL

The increments of displacements are written at every iteration.

- tstart

Time from which the increments will be written.

PRINTFHE, tstart

- PRINTFHE

The out of balance forces are written at every iteration.

- tstart

Time from which the out of balance forces will be written.

PRINTTMPRT

The temperatures are written:
\checkmark in the fibres of the BEAM elements,
\checkmark in the TRUSS finite elements,
\checkmark in the integration points on the thickness and in the bars of the SHELL elements and
$\checkmark \quad$ at the nodes of the SOLID elements.

PRINTVELAC

The velocity and acceleration are written at every time step (In a dynamic analysis).

PRNSIGMASL, nsol

- PRNSIGMASL

Print the stresses in the SOLID elements.

- nsol

Number of the SOLID element where the mechanical strains, the stresses, the damage in tension and in compression and the accumulated plastic strain will be printed. Valid only for a 3D structural analysis.

Note: If nsol = 0, then the stresses are printed for all SOLID elements. This produces a large amount of output.

PRNEIBEAM
Print the stiffness EA, ES and El in the BEAM elements

PRNSIGMABM, nbm, ng

- PRNSIGMABM

Print the stresses in a BEAM element (positive in tension).

- nbm

Number of the BEAM element where stresses are printed.

- $n g$

Integration point of the BEAM element where stresses are printed.

PRINTET, nbm, ng

- PRINTET

Print the tangent moduli in a BEAM element.

- nbm

Number of BEAM element where moduli are printed.

- $n g$

Integration point of the BEAM element where moduli are printed.

PRNEPSMBM, nbm, ng

- PRNEPSMBM

Print the mechanical strains in a BEAM element (positive in tension).

- nbm

Number of BEAM element where mechanical strains are printed.

- $n g$

Integration point of the BEAM element where mechanical strains are printed.

PRNSIGMASH, nsh

- PRNSIGMASH

Print the stresses in a SHELL element.

- nsh

Number of the SHELL element where the stresses are printed.

Equivalent to PRNSIGMASH for all the SHELL elements (large amount of results).

PRNNXSHELL
Print the membrane forces $\mathrm{N}_{\mathrm{x}}, \mathrm{N}_{\mathrm{y}}$ and $\mathrm{N}_{\mathrm{xy}}, \mathrm{N}_{1}, \mathrm{~N}_{2}$ and α in the SHELL elements.

PRNMXSHELL
Print the bending moments M_{x}, M_{y} and $M_{x y}, M_{1}, M_{2}$ and α in the SHELL elements

PRNEASHELL
Print the membrane stiffness EAx EA_{y} at the 4 integration points on the surface of the SHELL elements (in an elastic element, this stiffness would be $E \frac{t}{1-v^{2}}$ with E the Young's modulus, t the thickness of the plate and v the Poisson ratio). If reinforcing bars are present in the element, the stiffness combines the effect of concrete with this of the bars.

PRNEISHELL
Print the bending stiffness $E I_{x}, E l_{y}$ at the 4 integration points on the surface of the SHELL elements (in an elastic element, this stiffness would be $E \frac{t^{3}}{12\left(1-v^{2}\right)}$).

PRNSTRAIN, eps_lim

- PRNSTRAIN

Print a message (with the total strain and the stress related strain) when the absolute value of the stress related strain in a bar of a SHELL element exceeds a certain limit. This message can be retrieved in the ".OUT" file by a search on the targets:
Total strain : or Stress related strain:

- eps_lim

Limit of the strain that triggers the message.
D. 1 card, output results last line

One blank line as last line of series.

3. Structure of the ".TEM" files used with the BEAM F.E.

SERIES 1: COMMENTS

A. Multiple cards (can be 0)

As many lines as required may be introduced by the user at the beginning of the file to comment the content of the file.
B. 1 card

1 blank line to indicate that the comments are finished.

SERIES 2:

NFIBERBEAM, nfiberbeam(ngb)

- NFIBERBEAM

Command.

- nfiberbeam

Quantity of fibres in this section.

SERIES 3:

FIBERS Command.

SERIES 4:

A. 1 card for the position of the node of the BEAM element in the (y, z) system of coordinates. NODELINE, Yo, Zo

- NODELINE

Command.

- Yo
y coordinate (vertical, upward) of the node in the (y, z) system.
- Zo
z coordinate (horizontal, to the right) of the node in the (y, z) system.
B. 1 card for the position of the centre of rotation of the section in the (y, z) system of coordinates.
YC_ZC, Yc, Zc
- YC_ZC

Command.

- $Y \subset$
y coordinate of the centre of rotation in the (y, z) system.
- Zc
z coordinate of the centre of rotation in the (y, z) system.

SERIES 5:

A. 1 card, nfiberbeam lines rcoordyzinbeam(1,nfb), rcoordyzinbeam(2,nfb), fibersection(nfb), Mat(nfb), Sr(nfb)

- rcoordyzinbeam(1,nfb)
y coordinate of this fibre.
- rcoordyzinbeam(2,nfb)
z coordinate of this fibre.
- fibersection(nfb)
cross sectional area of this fibre.
- Mat(nfb)

Number of the material in this fibre (the number of the materials is given by the order in which they appear in Series 26 of the .IN file, see Section 2).

- $\operatorname{Sr}(n f b)$

Residual stress present in this fibre.

SERIES 6:

1 card
COMMAND

- COMMAND = COLD

This section is not heated. The temperature in all fibres remains at $20^{\circ} \mathrm{C}$ for all the BEAM finite elements that belong to this type of section. ===> The ".TEM" file can be ended here. No need to write the next groups (TIME, NFIBERBEAM).

- COMMAND = HOT

This section is heated and all the BEAM finite elements that belong to this type of section will have the same temperature distribution. The next groups are necessary.

- COMMAND = HASEMI, LOCAFI or CFD

This section is heated by one or several localised fire and all longitudinal points of integration of all BEAM finite elements that belong to this type of section will have a different temperature distribution, depending on their position in the structure relative of the position of the fire(s).
The series 1 to 6 are only present in the ".TEM" file of this section type that has the lowest number of all elements and for the point of integration 1.
For example, if this section type comprises the elements from 11 to 25 , Series 1 to 6 are requested only in file "B00011_1.TEM". The files "B00011_2.TEM" until "B00025_2.TEM" contain only Series 7.

SERIES 7: TEMPERATURES

Repeat this Series for each time step when the temperatures are given
A. 1 card

One blank line.
B. 1 card

TIME=, time

- TIME=

Command.

- Time

Time for which the temperatures are given.
C. 1 card
======
Command.
D. 1 card, nfiberbeam(ngb) lines
nfb, Tempbeam(nfb)

- nfb
number of the fibre, given in increase order.
- Tempbeam(nfb)

Temperature of the fibre nfb.

4. Structure of the ".TOR" files used with the BEAM F.E.

This file is requested for 3D beam finite elements. It gives the torsion stiffness and the warping function of the section. The calculation of these properties must be made by SAFIR on the same section and with the same discretisation as the determination of the temperatures. Therefore:

1) The name of both files must be consistent: if the file for the temperatures is named "name.tem", the file for the torsion properties must be names "name-t.tor".
2) The series 2 to 5 must be the same in both files. SAFIR will make a check on this correspondence and issue an error message if the correspondence is not perfect.

SERIES 1

This Series with the comments is not present in this file

SERIES 2 to 5

See section 3 of this document

SERIES 6

A. 1 card

One blank line.
B. 1 card

TIME=
Command.
C. 1 card

Command.
D. 1 card W

Command.
E. 1 card, nfiberbeam lines $w, d w / d y, d w / d z$

- w

Value of the warping function in this fibre.

- dw.dy

Spatial derivative of the warping function in this fibre.

- $D w / d z$

Spatial derivative of the warping function in this fibre.

SERIES 7

A. $\frac{1 \text { card }}{\text { According }}$

Command.
B. 1 card
$\mathrm{GJ}=, \mathrm{gj}$

- GJ=

Command.

- $\quad g j(n g b)$

Torsional stiffness of the cross section.

5. Structure of the ".TSH" files used with the SHELL F. E.

SERIES 1: COLD OR HOT SECTION

A. 1 card

COMMAND

- COMMAND = COLD

This section is not heated. The temperature in the shell remains at $20^{\circ} \mathrm{C}$. => The ".TSH" file can be ended here. No need to write the next series of cards.

- COMMAND = HOT

This section is heated by a time-temperature curve (the same curve for all the elements of this type). The next groups are necessary.

- COMMAND $=$ HASEMI or CFD

This section is heated by one or several localised fire(s) and all points of integration in the plane of all SHELL finite elements that belong to this type of section will have a different temperature distribution, depending on their position in the structure relative of the position of the fire(s).
The series 1 to 6 are only present in the ".TSH" file of this section type that has the lowest number of all elements and for the point of integration 1.
For example, if this section type comprises the elements from 18 to 35 , Series 1 to 6 are requested only in file "S00018_1.TSH". The files from "S00018_2.TSH" tol "S00035_4.TSH" contain only Series 7.

SERIES 2: POSITION OF THE NODES

A. 1 card

POSITION OF THE NODES.

> Command.
B. 1 card
========================
C. 1 card

NUMBER OF POSITIONS:, number_of_positions

- NUMBER OF POSITIONS:

Command.

- number_of_positions

Gives the quantity of nodes which give the temperature of the slab across its thickness. The positions of these nodes only depend on the discretisation
which was chosen when the temperature distribution was calculated. It is independent of the location of the integration points across the thickness which will be used in the structural analysis.
D. 1 card

- position of the first node (the one with the smallest z coordinate)
- position of the second node
- position of the last node (the one with the highest z coordinate)

All positions are given, from node 1 to node number_of_positions, 8 values on each line.

SERIES 4: TEMPERATURE

Repeat this group of lines for each time step.
A. 1 card

1 blank line
B. 1 card

TIME=, time

- TIME=

Command.

- time

Value of the time when the temperatures are given.
C. 1 card
=====
D. number of position lines

- position of the node (same as in series 6)
- temperature at this node

6. Structure of the temperature files used with the TRUSS F. E.

As many lines as necessary, each line being, in a free format, a pair of values in the form: time temperature
Example :

0.	20.
300.	600
600	800
1200.	1000
1500.	900
1800.	20.
3600.	20.

7. SHELL elements

This section explains how to consider residual stresses in the first material of the SHELL element. This procedure has been foreseen to introduce residual stresses in steel plates, not in the rebars of reinforced concrete slabs.

To introduce residual stresses, it is necessary to create a file with the name "resi_str_shell.txt", which must be placed in the same folder as the structural input file.

In this file, the residual stresses should be placed in Pascal, for each point of integration of the elements in which there are residual stresses.

- Nodes
- Points of integration

Figure 6: Positions of the integration points in the plane

There are 4 points of integration in the plane of the element located as indicated by Figure 6. The integration in the plane is by the method of Gauss.

The quantity of integration points on the thickness NGTHICK is chosen by the user, from 2 to 9. The integration on the thickness is also by the method of Gauss.

Structure of the file "resi str shell.txt"

One line for SHELL element
ELEM, ne

- ELEM

Command.

- ne

Number of this element.

One line for each gauss point of the SHELL element. There are ($4 \times$ NGTHICK) Gauss points. PG, npg, Sx, Sy, Sxy

- PG

Command.

- npg

Number of this gauss point.

- $S x$

Residual strength in \mathbf{x} axis.

- Sy

Residual strength in y axis.

- Sxy

Residual tangential strength.
One line (optional) for automatic generation of the gauss points.
Gpg, nlpg, kgene

- Gpg

Command.

- nlpg

Number of the last gauss point with automatic generation.

- kgene

Step for the automatic generation of the gauss points.
One line (optional) for automatic generation of the elements GELEM, nle, kgene

- GELEM

Command.

- nle

Number of the last element with automatic generation.

- kgene

Step for the automatic generation of the elements.

Example

ELEM	1			
PG	1	100000	0	0
PG	2	100000	0	0
PG	3	100000	0	0
PG	4	100000	0	0
PG	5	100000	0	0
PG	6	100000	0	0
PG	7	100000	0	0
PG	8	100000	0	0
ELEM	2			
PG	1	-100000	0	0
PG	2	-100000	0	0
PG	3	-100000	0	0
PG	4	-100000	0	0
PG	5	-100000	0	0
PG	6	-100000	0	0
PG	7	-100000	0	0
PG	8	-100000	0	0
ELEM	3			
PG	1	-100000	0	0
PG	2	-100000	0	0
PG	3	-100000	0	0
PG	4	-100000	0	0
PG	5	-100000	0	0
PG	6	-100000	0	0
PG	7	-100000	0	0
PG	8	-100000	0	0
ELEM	4		100000	0
PG	1	100000	0	0
PG	2	1000		
PG	3	100000	0	0
PG	4	100000	0	0
PG	5	100000	0	0
PG	6	100000	0	0
PG	7	100000	0	0
PG	8	100000	0	0

Or with automatic generation:

ELEM	1			
PG	1	100000	0	0
Gpg	8	1		
GELEM	4	3		
ELEM	2			
PG	1	-100000	0	0
Gpg	8	1		
GELEM	3	1		

[^0]: ${ }^{1}$ Utilisation of STATIC would also work in this case, possibly at the price of a few more iterations. Utilisation of DYNAMIC is also possible.

[^1]: ${ }^{2}$ See User's manual for SAFIR, Part 1, section 5-5

[^2]: Note: A BEAM element loaded by a hydrostatic load will be loaded by a TRAPLOCBM load. The distributed load at each end node of the element is given by $\mathrm{P}=$ gamma x depth where depth is the difference between the value of cwatertable and the coordinate ndim of the node in the deformed configuration. It is thus assumed that gravity is in the direction of $-\mathbf{y}$ for 2 D structures and $\mathbf{- z}$ for 3D structures.
 If the value of depth at a given node is negative, it is replaced by 0 .
 The pressure will be applied on the deformed shape of the structure.

