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Insulin signaling at the target tissue re-
sults in a large array of biological out-
comes. These events are essential for

normal growth and development and for
normal homeostasis of glucose, fat, and
protein metabolism. Elucidating the in-
tracellular events after activation of the IR
has been the primary focus of a large
number of investigators for decades, and
for excellent reasons. Understanding the
signaling pathways involved in insulin ac-
tion could lead to a better understanding
of the pathophysiology of insulin resis-
tance associated with obesity and type 2
diabetes, and identifying key molecules
and processes could lead to newer and
more effective therapeutic agents for
treating these common disorders.

This review summarizes our previous
understanding of how insulin acts and
outlines some recent developments in our
understanding of insulin action and insu-
lin resistance at the cellular level, begin-
ning with a discussion on the discovery of
evolutionarily conserved molecules of the
insulin signaling pathways. This article
will also provide a summary of a few in
vitro and cellular models of insulin resis-
tance and a description of some new par-
adigms in the cellular mechanisms of
insulin action.

This review will not attempt to be all-
inclusive; for a more comprehensive un-

derstanding, readers are referred to more
complete reviews on insulin action (1–5).

INSULIN ACTION AT THE
CELLULAR LEVEL

Our current knowledge
Circulating insulin rapidly reaches the
target tissue, where it interacts with its
cognate receptor. The IR (IR), which is
widely expressed, is a transmembrane ty-
rosine (Tyr) kinase that is expressed as a
tetramer in an a2b2 configuration (6,7).
Insulin binding to specific regions of the a
subunit leads to a rapid configurational
change in the receptor that eventuates in
autophosphorylation of specific Tyr resi-
dues of the intracellular region of the b
subunits through a transphosphorylation
mechanism.

Autophosphorylation results in acti-
vation of the Tyr kinase activity of the
receptor (8). In the inactive state, the cat-
alytic site of the Tyr kinase is occluded by
the “activation-loop,” preventing access
of ATP and various substrates. Autophos-
phorylation of Tyr residues at positions
1,158, 1,162, and 1,163 in the activation-
loop causes a conformational change that
allows ATP and substrates to reach the
catalytic site (9,10).

The activated IR kinase phosphory-
lates substrate proteins on Tyr residues,

and these phosphorylated Tyr residues
serve as docking sites for downstream ef-
fectors (Fig. 1). Molecules such as Shc, IR
substrate (IRS) (1,4), and Gab-1 engage
the IR directly and provide a docking in-
terface with downstream substrates. IRS
proteins contain a conserved pleckstrin
homology (PH) domain, located at the
NH2-terminus, that serves to localize the
IRS proteins in close proximity to the re-
ceptor (11,12). IRS proteins contain a
phosphate-Tyr binding (PTB) domain
COOH-terminal to their PH domain. The
PTB domain, present in a number of sig-
naling molecules (13), shares 75% se-
quence identity (14) between IRS-1 and
IRS-2 and functions as a binding site to
the NPXY motif of the juxtamembrane re-
gion of the IR to promote IR/IRS-1 inter-
actions (15,16). The COOH-terminal
region of IRS proteins is poorly con-
served. It contains multiple Tyr phos-
phorylation motifs that serve as docking
sites for SH2 domain– containing pro-
teins, like the p85a regulatory subunit of
phosphatidylinositol 3-kinase (PI3-K),
growth factor receptor binding protein-2
(Grb2), Nck, Crk, Fyn, SHP-2, and oth-
ers, all of which mediate the metabolic
and growth-promoting functions of insu-
lin (2,17).

Insulin-receptor signaling involves
two major pathways—the mitogen-
activated protein (MAP) kinase and the
PI3-K. Although these pathways are de-
scribed in a linear fashion, it should not
be forgotten that each pathway could, un-
der certain circumstances, activate the
other. Thus, Akt may activate Raf kinase,
and conversely, Ras may activate PI3-K.
The MAP kinase pathway is activated by
the binding of Grb2 to Tyr-phosphory-
lated Shc or IRS via its SH2 domain. Grb2
is prebound to mammalian Son of Seven-
less (mSOS), a nucleotide exchange pro-
tein that catalyzes the exchange of GDP
for GTP on Ras (a small GTPase protein);
this results in activation of Ras. The pre-
nylated form of Ras binds the inner leaflet
of the plasma membrane, and on activa-
tion, it binds the NH2-terminal region of
Raf, recruiting Raf to the plasma mem-
brane. Ras-Raf interaction displaces the
14-3-3 proteins that are bound to Raf and
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allows the phosphorylation of Raf by a
number of (Ser/Thr) kinases, thus disin-
hibiting Raf kinase (18). Raf-1 activates a
dual-specificity kinase, MEK1, by phos-
phorylating two regulatory Ser residues.
In turn, MEK1 activates extracellular sig-
nal-regulated kinase (ERK)-1 and ERK2
by phosphorylating regulatory Tyr and
Thr residues (19). Activated ERKs medi-
ate the growth-promoting effects of insu-
lin by phosphorylating transcription
factors such as Elk-1, leading to the in-
duction of genes.

The metabolic response to insulin is
primarily mediated via the PI3-K path-
way. Following the association of the p85/
p110 complex of PI3-K with the IRS
molecules, PI3-K activity results in pro-
duction of phosphatidylinositol 3,4,5-
phosphate (PIP3). PIP3 binds to the PH
domains of PI3-K– dependent kinase
(PDK)-1 and Akt (protein Ser/Thr kinase
B). This leads to the activation of PDK1,
which in turn phosphorylates and acti-
vates Akt. Akt has been implicated in reg-
ulating the translocation of GLUT4,
an insulin-sensitive glucose transporter
expressed by muscle and fat cells. Inter-
estingly, Akt may not be the only down-
stream kinase to regulate GLUT4
translocation to the cell surface. Protein
kinase C (PKC) isoforms z and l are also
activated by PI3-K and PDK1 and regulate
GLUT4 translocation (rev. in 20). Indeed,

overexpression of wild-type PKCz in-
creases, whereas overexpression of a
dominant-negative PKCz decreases basal
and insulin-stimulated glucose transport
in adipocytes and muscle cells (21,22).

Stimulation of glycogen synthesis is
another key metabolic effect of insulin.
Glycogen synthase kinase-3 (GSK-3) me-
diates, at least in part, the activation of
glycogen synthase in response to insulin.
Activation of Akt by insulin results in the
phosphorylation and inactivation of
GSK-3, rendering it incapable of inhibit-
ing glycogen synthase activity (23).
GSK-3 also inactivates the protein synthe-
sis eukaryotic initiation factor (eIF)-2B
(the guanine nucleotide exchange factor)
by phosphorylation. Insulin-mediated ac-
tivation of Akt reverses these processes,
thereby enhancing protein synthesis (24).
Insulin can also activate protein synthesis
at the translational level by phosphoryla-
tion of p70S6 kinase and 4E-BP1 via the
kinase mammalian Target of Rapamycin
(mTOR). In fact, increased 4E-BP1 phos-
phorylation is controlled by a parallel
signaling pathway that immediately bifur-
cates upstream of p70s6k, with the two
pathways sharing a common rapamycin-
sensitive activator. The phosphorylation
of 4E-BP causes it to disassociate from the
eIF-4E, thus enhancing its ability to initi-
ate protein synthesis (25).

The importance of nuclear transport
of signaling molecules
Signaling substrates of the Tyr kinase re-
ceptors can be grouped into three levels,
depending on their proximity to the re-
ceptor. Level I represents proximal sub-
strates such as the IRS proteins and SHC
and the proteins that directly interact with
them. Level II represents downstream in-
termediates, including MAP kinases, Akt,
and related substrates, and level III mole-
cules affect the final biological responses
(Fig. 1). Whereas level I and II molecules
function primarily at the plasma mem-
brane or in the cytosol, many of the level
III molecules are transported into the nu-
cleus, because their specific function in-
volves the regulation of gene transcription.
A prerequisite for the nuclear transloca-
tion of these molecules is often phosphor-
ylation by upstream kinases.

For example, overexpression of mem-
brane-bound forms of ERK1 and ERK2
results in their homodimerization with
the endogenous ERKs’ isoforms, thus pre-
venting them from entering the nucleus
after activation of the receptor Tyr kinase.
As a result, transcriptional activation of
c-fos is inhibited; this strongly supports
the idea that nuclear translocation is an
essential component of the signaling cas-
cade (26).

Recently, insulin and IGF-1 have
been shown to inhibit nuclear translo-
cation of transcription factors in a pro-
cess that involves the activation of Akt, a
downstream effector of the insulin and
IGF-I receptor Tyr kinases. Akt phos-
phorylates a family of transcription fac-
tors called the Forkhead family (FH),
which includes FKHR, FKHRL1, and
AFX, and represents the mammalian
counterparts of DAF16 in the nema-
todes (27). Phosphorylation of FKHR
by Akt, after stimulation by insulin or
IGF-1, inhibits the expression of several
genes encoding for proteins, such as the
IGF binding protein-1 (28). Phosphor-
ylation of other members of the FH fam-
ily by Akt may similarly inhibit the
expression of other insulin-regulated
genes, such as phosphoenol pyruvate
carboxy kinase (PEPCK).

Akt phosphorylates the FH family of
proteins on Ser residues in a consensus
site, RXRXXS/T (29). This creates a phos-
phoserine motif capable of binding mem-
bers of the 14-3-3 family of proteins (30).
The interaction of FKHR with 14-3-3
leads to retention of FKHR in the cyto-

Figure 1—IR signaling pathways. The two major pathways are the Ras/Raf/MAP kinase and
PI3-K pathways. Initially, the activated IR binds SHC and the IRS molecules, and these interact
with downstream substrates. The PI3-K pathway leads to a large variety of biological actions after
IR activation.
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plasm and prevents FKHR from translo-
cating to the nucleus. Consequently, the
expression of a number of genes is inhib-
ited. Similar effects were observed with
IGF-I receptor-induced phosphorylation
of FKHRL1, which normally induces FAS,
partially explaining IGF’s antiapoptotic
effects (30).

Serum and glucocorticoid-inducible
kinase (SGK) is another recently de-
scribed target of the insulin and IGF-I re-
ceptor signaling cascades involving
PI3-K. SGK is apparently involved in am-
plifying the mitogenic signal, because it

demonstrates cytoplasmic-nuclear shut-
tling dependent on the phase of the cell
cycle (31). SGK is hyperphosphorylated
in serum-stimulated cells and localizes to
the nucleus, and inhibition of PI3-K results
in inhibition of this hyperphosphorylated
state of the protein and inhibition of the
nuclear localization of SGK (32).

Thus, an important paradigm has
recently been described in the signaling
pathways of the Tyr kinase receptors
that involves phosphorylation of signal-
ing molecules, which in turn deter-
mines their cytoplasmic or nuclear

localization and their ability to perform
their function(s).

EVOLUTIONARY ASPECTS
OF THE INSULIN
SIGNALING CASCADES
The IR and its postreceptor signaling
pathways are highly conserved evolution-
arily (Fig. 2A and B). Many of the signal-
ing molecules that mediate the effects of
insulin were first discovered and charac-
terized in either Drosophila (fly) and/or
Caenorhabditis (worm) species.

An IR homologue was isolated and
characterized in Drosophila species (33),
and an insulin-like peptide was also
found in Drosophila extracts (34). The IR
of Drosophila species is highly conserved,
and like the mammalian IR, it is expressed
as a tetramer of two a and two b subunits.
Whereas the b subunit of the Drosophila
IR has a COOH-terminal extension with
motifs that are known to bind SH2 and
PTB domain–containing proteins, it is ap-
parent from recent studies that when ex-
pressed in the absence of IRS-1, the
Drosophila IR is not active. When coex-
pressed in cells containing IRS proteins,
the Drosophila IR is capable of promoting
cell survival and interacting with IRS-I via
its COOH-terminal extension (35). Re-
cently, a Drosophila homologue (CHICO)
of vertebrate IRS 1–4 proteins was char-
acterized as showing 41% amino acid
identity to the NH2-terminal PH domains
and 38% identity to the PTB domains of
IRS 1–4 (Fig. 2). In the COOH-terminal
region, which is less homologous, there
are several putative SH2-binding motifs
for PI3-K (YXXM) and for Grb2/DRK
binding (36). CHICO plays an important
role in cell proliferation and overall body
growth in Drosophila. Furthermore, a
Drosophila homologue of PTEN (a human
tumor suppressor gene and phospholipid
phosphatase that inhibits PI3-K and Akt
pathways) (Fig. 2A) suppresses hyper-
plastic growth in flies by inhibiting Dro-
sophila CHICO and PI3-K (37).

In C. elegans, the ability of the worm
to enter the developmental larval stage
“dauer” is modulated by a PI3-K pathway
(Fig. 2B). DAF-2 is an insulin/IGF-I re-
ceptor-like molecule that activates the
PI3-K and Akt pathways and inhibits
dauer formation induced by DAF-16, the
Forkhead transcription factor (FKH)
(38,39). Loss of DAF-2 results in in-
creased longevity and constitutive dauer
formation, a stage of developmental arrest

Figure 2—Drosophila and C. elegans. Insulin signaling pathways are evolutionarily conserved.
A: Drosophila express an IR that activates a pathway that involves CHICO (a protein related to
the mammalian IRS molecules), Dp110 (PI3-K homologue), Akt, and the phosphatase PTEN.
B: Many of the molecules expressed by C. elegans include homologues to mammalian counterparts
of the insulin signaling pathways. These include DAF-2, an IR-like molecule; AGE-1, a PI3-K–
related molecule; DAF-18, a PTEN-related molecule; and DAF-16, which is related to the FKHR
in mammalian systems.
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and reduced metabolic activity that en-
hances survival during periods of food de-
privation and other environmental
stresses. These observations suggest that
DAF-16 promotes entry into the dauer
phase and enhances longevity and that
signaling via the insulin/IGF-I receptor–
PI3-K–PKB pathway may disrupt these ef-
fects of DAF-16. Indeed, a C. elegans
homologue of PTEN has been character-
ized (DAF-18) and shown to inhibit
PI3-K and enhance dauer formation
(40,41).

ROLE OF INSULIN
SIGNALING SYSTEMS IN
INSULIN RESISTANCE
Insulin resistance is a common pathologic
state in which target cells fail to respond
to ordinary levels of circulating insulin. It
is frequently associated with a number of
diseases, including chronic infection, hu-
man obesity, and type 2 diabetes (4). At
the molecular level, impaired insulin sig-
naling results from mutations or post-
translation modifications of the IR itself or
any of its downstream effector molecules
(rev. in 42). In some cases, insulin resis-
tance could be accounted for by a defect
in insulin binding to its receptor (43);
however, insulin resistance is most often
attributed to a postbinding defect in insu-
lin action. A marked reduction in the re-
ceptor kinase activity was observed in
several patients (type A) with extreme re-
sistance to insulin, but with normal insu-
lin binding (44,45). Similarly, severe
defects in receptor kinase activity are as-
sociated with naturally occurring muta-

tions of the IR gene (46). However, these
events are rare and do not play an impor-
tant role in the pathophysiology of typical
type 2 diabetes or obesity (47).

Whereas the IR is downregulated in
human obesity, there is no further de-
crease in its activity in liver and muscle of
type 2 diabetic patients, suggesting that
aggravated insulin resistance of type 2 di-
abetes is primarily of a postreceptor na-
ture (48). IR Tyr kinase activity in patients
with type 2 diabetes is significantly re-
duced (49). The kinase activity could be
inhibited because of elevation in Tyr
phosphatase activity (50) or enhanced
Ser/Thr phosphorylation of the receptor
that impairs its Tyr kinase activity
(51,52). Ser/Thr phosphorylation of the
IR occurs in response to the treatment of
cells with insulin (53), or with activators
of PKC or the cAMP-dependent protein
kinase (54,55). Accordingly, downstream
signaling cascades should be decreased in
proportion to the defect in IR Tyr kinase
activity; apparently, however, when com-
pared with the reductions in Tyr phos-
phorylation of the IR and IRS-1, PI3-K is
more severely reduced in type 2 diabetic
patients (56).

Glycogen synthesis is markedly re-
duced in the muscle of type 2 diabetic
patients. In recent studies using nuclear
magnetic resonance technology, Shulman
et al. (57) demonstrated that one of the
defects resulting in these changes was a
reduction in glucose transport. Because
intracellular glucose and glucose-6-
phosphate levels were reduced, Shulman

et al. hypothesized that glucose transport
was defective. Insulin-stimulated signal-
ing pathways studied in isolated muscle
preparations from type 2 diabetic patients
demonstrated normal IR Tyr phosphory-
lation, normal MAP kinase (ERK) phos-
phorylation, and normal glycogen
synthase activity. In contrast, insulin-
stimulated glucose transport was reduced
(58); this was accompanied by a decrease
in Tyr phosphorylation of IRS-1 and a re-
duced association of IRS-1 and PI3-K.
Hence, insulin resistance could be attrib-
uted to the uncoupling of the IR and IRS
proteins, which could be the result of ex-
cessive Ser/Thr phosphorylation of the
latter (vide infra) (59).

Ser/Thr phosphorylation of IRS
proteins and insulin resistance
Agents that enhance Ser/Thr phosphory-
lation of IRS proteins or other down-
stream effectors of the insulin signaling
cascade play negative-regulatory roles in
insulin action. Ser/Thr phosphorylation
impairs insulin-stimulated Tyr phosphor-
ylation of IRS proteins, uncouples insulin
signal transduction, and has been impli-
cated in the development of insulin resis-
tance (Fig. 3) (59–61).

Increased Ser phosphorylation of
IRS-1 has been observed after treatment
of cells with activators of PKC, Ser/Thr
phosphatase inhibitors such as okadaic
acid, platelet-derived growth factor (62),
insulin or angiotensin II, and with activa-
tion of cellular stress pathways by tumor
necrosis factor (TNF) (63) and other cy-
tokines (64). Decreased Tyr phosphoryla-
tion of IRS proteins and a reduction in
their associated PI3-K activity is observed
in skeletal muscle and adipocytes both in
obesity and type 2 diabetes (56). Simi-
larly, insulin-stimulated Tyr phosphory-
lation of IRS proteins and the activation of
their downstream effectors are decreased
in both genetic (65) and induced (66) ro-
dent models of obesity and insulin resis-
tance. Several mechanisms, many of
which are discussed further, were pro-
posed to account for the effects of the en-
hanced Ser/Thr phosphorylation of IRS-1
on its Tyr phosphorylation state; how-
ever, it is clear that a decrease in Tyr phos-
phorylation of IRS-1 is not necessarily
secondary to a decline in insulin-receptor
kinase activity (1).

Figure 3—Ser/Thr phosphorylation of the IRS molecules induces insulin resistance. Ser/Thr
phosphorylation of the IRS proteins may serve as a physiological negative feedback control mech-
anism or may result in insulin resistance. Modified with permission (59).
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TNF-a as an inducer of insulin
resistance
TNF-a expression is increased in abdom-
inal fat and muscle tissue of obese indi-
viduals and in many animal models of
obesity. The degree of TNF-a expression
is positively correlated with the degree of
obesity and the levels of plasma insulin
and decreases with the improvement of
insulin sensitivity (67–69). Circulating
levels of TNF-a are elevated in obese sub-
jects and decrease with weight reduction
(70). Further support for its role in af-
fecting insulin sensitivity resulted from
studies using a soluble TNF-receptor IgG
fusion protein, which neutralized TNF-a
when administered to animals with insu-
lin resistance; this neutralization was as-
sociated with improvement in insulin
action (71). Whereas similar studies in
humans were unsuccessful (72), the pos-
sibility remains that TNF-a causes insulin
resistance in a paracrine fashion and that
circulating levels of TNF-a represent
leakage into the circulation after in-
creased tissue expression. Whether the ef-
fects of TNF-a are direct or indirect has
not yet been determined, because it has
been shown that TNF-a stimulates leptin
secretion from adipocytes, and free fatty
acid (FFA) levels are correlated with
TNF-a levels. Both leptin and FFAs play a
role in insulin resistance (73–75).

TNF-a has direct effects on the insu-
lin signaling cascade in cultured cells.
TNF-a increases the Ser phosphorylation
of IRS-1 and IRS-2 (Fig. 3). Serine phos-
phorylation of these substrates results in a
reduction in both insulin-receptor Tyr
autophosphorylation and Tyr kinase ac-
tivity of the receptor and markedly re-
duces the ability of the IRS molecules to
dock with the receptor and interact with
downstream pathways, such as PI3-K
(59,76) and glucose transport (77). The
mechanisms by which TNF-a enhances
IRS Ser phosphorylation may include
sphingolipid metabolism with the gener-
ation of ceramide (78), which in turn
regulates Ser/Thr kinases (ceramide-
activated kinases, PKCz, and Raf 1) or
PKCe, which directly enhances TNF-a ef-
fects (79,80). Interestingly, activation of
the peroxisome proliferator–activated re-
ceptor-g (PPARg) by thiazolidinediones
(TZDs) reduces the expression of TNF-a
and hinders TNF-a’s inhibition of insulin
action (81).

Although the role of TNF-a in induc-
ing or perpetuating insulin resistance has

yet to be confirmed, it represents a para-
digm from which investigators have
slowly accumulated a large amount of in-
formation that has enabled them to for-
mulate more exactly the mechanisms
involved in the insulin resistance seen in
obesity and type 2 diabetes.

The role of PPARg in insulin action
and insulin resistance
The PPAR family includes PPARa, -d, and
-g. These nuclear receptors heterodimer-
ize with the retinoid X receptor (RXR) and
regulate transcription of a number of
genes. PPARg, in particular, has been
shown to be involved in regulating genes
involved in adipogenesis and, by implica-
tion, insulin action. Adipogenesis in-
volves a number of transcription factors,
including PPARg, C/EBPs, and ADD-1/
SREBP-1 (82). For instance, the activation
of PPARg by TZDs enhances adipocyte
differentiation and induces gene expres-
sion of genes involved in insulin action.
These genes include aP2, PEPCK, acyl
CoA synthase, and lipoprotein lipase (83–
85). In addition, PPARg activation inhib-
its leptin gene expression, as well as the
expression of TNF-a, which, in turn, is an
inhibitor of PPARg gene expression (86).
Growth factors that stimulate cellular
proliferation block fat-cell differentiation.
This effect is mediated by the activation of
MAP kinase, which phosphorylates
PPARg on Ser and thereby reduces its
activity. Thus, it is very apparent that
PPARg may play a significant role in the
pathophysiology of obesity and type 2 di-
abetes. This notion is supported by the
recent description of two families whose
mutations in PPARg caused severe insulin
resistance and diabetes (87).

TZDs are a new class of drugs recently
introduced for the treatment of type 2 di-
abetes that function by direct binding and
activation of PPARg. PPARg is expressed
at much higher levels in fat tissue when
compared with muscle and liver. How-
ever, PPARg ligands enhance insulin sen-
sitivity in both muscle and liver. The
effects of TZDs and PPARg may be indi-
rect, whereby the primary effects on adi-
pocytes are secondarily transmitted to
muscle and liver via other mediators, such
as changes in TNF-a, leptin, or FFAs (88).
For example, TZDs acting via PPARg in-
duce lipoprotein lipase, thereby increas-
ing triglyceride uptake into fat, and
reduce circulating FFAs, which then re-
duces insulin resistance at the liver and

muscle. Alternatively, the small amount
of PPARg in muscle and other tissues may
be sufficient to enable a response to phar-
macological doses of TZDs. Interestingly,
TZDs may improve insulin action even in
the absence of adipose tissue (89). Fi-
nally, enhanced GLUT4 gene expression
is an important mechanism that may ex-
plain the improvement of insulin action at
the target tissue after treatment with
TZDs.

Fatty acids and insulin resistance
(lipotoxicity)
In both obesity and type 2 diabetes,
plasma FFA levels are elevated. Increas-
ingly, there is evidence to support the
contention that FFAs affect insulin action
at the peripheral target tissues. The exact
site of inhibition of insulin action has not
yet been well defined; however, FFA-
induced defects at the level of glucose up-
take into muscle, phosphorylation of
glucose by glucose-6-phosphate, and gly-
cogen synthesis have been demonstrated
(90,91). It has been further proposed that
the mechanisms by which TNF-a and
leptin cause insulin resistance, and
whereby the TZDs improve insulin sensi-
tivity, may be triggered indirectly, via a
reduction in FFAs levels (92,93).

Feedback regulation of insulin
signaling cascades
An essential component of cellular signal
transduction is regulation of the system.
This may be achieved by autoregulation,
resulting in inhibition of upstream ki-
nases (homologous desensitization) by
downstream enzymes or substrates. Alter-
natively, signals from other apparently
unrelated receptor pathways may cause
inhibition of the signal (heterologous de-
sensitization).

Ser/Thr residues of IRS proteins have
a dual function and serve either as posi-
tive or negative modulators of insulin sig-
nal transduction. Phosphorylation of Ser
residues within the PTB domain of IRS-1
by insulin-stimulated PKB (76) protects
IRS proteins from the rapid action of pro-
tein Tyr phosphatases and enables the
Ser-phosphorylated IRS proteins to main-
tain their Tyr-phosphorylated active con-
formation. These findings implicate PKB
alone as a positive regulator of IRS-1 func-
tions. In contrast, Ser/Thr kinase, which is
different from PKB (76), has been impli-
cated as the kinase(s) that phosphorylates
IRS-1 and acts as the negative feedback
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control regulator that turns off insulin sig-
nals, either by inducing the dissociation
of IRS proteins from IR (59), releasing the
IRS proteins from intracellular complexes
that maintain them in close proximity to
the receptor (94), or turning IRS proteins
into inhibitors of the insulin-receptor ki-
nase (60).

Several studies provided evidence
that at least some of the kinases that neg-
atively regulate IRS protein function are
wortmannin-sensitive Ser/Thr kinases
that are downstream effectors of PI3-K.
Indeed, only wortmannin, a PI3-K inhib-
itor, effectively inhibited the enhanced
Ser phosphorylation, the dissociation of
IRS proteins from the IR, and the subse-
quent reduction in Tyr phosphorylation
of IRS proteins observed after a 60-min
insulin treatment (76). Other inhibitors
that selectively block the activities of
MEK, such as PD 098059, were ineffec-
tive in preventing the negative feedback
control mechanism induced by insulin.
Hence, a wortmannin-sensitive Ser/Thr
kinase, different from PKBa, presumably
acts as the feedback control regulator that
turns off insulin signals. Activation of this
kinase is expected to take place subse-
quent to activation of PKBa, which acts as
a positive-regulator of IRS-1 function, as
previously described.

Several Ser/Thr kinases located
downstream of PI3-K are likely candi-
dates to fulfill this role. These include the
mTORs (95) and p70 kDa S6 kinase (96),
which are activated by phospho-inositols
(PtdIns) (3–5) PDK1 (97) and PKB (98).
Indeed, mTOR-mediated phosphoryla-
tion of IRS-1 on Ser 632, 662, and 731 of
IRS-1 was shown to inhibit insulin-
stimulated Tyr phosphorylation of IRS-1
and its ability to bind PI3-K (99). Accord-
ingly, membrane-targeted PI3-K was
found to stimulate Ser/Thr phosphoryla-
tion of IRS-1 and to inhibit IRS-1–
associated PI3-K activity (100). Other
potential candidates could be members of
the PKC family. Atypical PKCs, exempli-
fied by PKCz, were implicated as down-
stream effectors of PI3-K (101) and as
mediators of insulin-stimulated glucose
transport (102). In fact, tetradecanoyl-
phorbol acetate, a potent activator of var-
ious PKC isoforms, inhibits both IRS-1
interactions with the juxtamembrane re-
gion of the IR as well as insulin’s ability to
phosphorylate IRS proteins (59), presum-
ably through the activation of MAPK
(103).

Other downstream effectors of PI3-K
are less likely to act as insulin-induced
negative regulators of IRS-1 function.
Glycogen synthase kinase-3 (GSK-3) is
capable of phosphorylating IRS-1, and
this modification converts IRS-1 into an
inhibitor of IR Tyr kinase activity in vitro
(104); however, it is unlikely that GSK-3
could act as an insulin-stimulated kinase
of IRS-1, because GSK-3 activity is inhib-
ited by insulin (23). PtdIns (3,4,5) PDKs
are downstream effectors of PI3-K and are
stimulated in response to insulin (105).
However, being upstream activators of
PKB, they are less likely candidates for
being negative regulators of IRS-1 func-
tion.

The findings described above indicate
that Ser/Thr phosphorylation of the IRS
protein after insulin stimulation has a
dual role—either to enhance or to termi-
nate insulin’s signal. Insulin activates a
wortmannin-sensitive kinase down-
stream, or independent from PKB, that
phosphorylates yet-unidentified Ser/Thr
residues within the IRS protein. Phos-
phorylation of these sites is part of the
negative feedback control mechanism in-
duced by insulin that leads to the dissoci-
ation of the IR-IRS complexes, turns IRS
proteins into inhibitors of the insulin-
receptor kinase, and results in the termi-
nation of the insulin signal. Agents that
induce insulin resistance, such as TNF,
take advantage of this mechanism by
stimulating the phosphorylation of IRS
proteins on the same or similar Ser/Thr
sites, the phosphorylation of which re-
sults in the dissociation of IR-IRS com-
plexes (Fig. 3) (59). In contrast, Ser
residues within the PTB domain of IRS-1,
located within consensus PKB phosphor-
ylation sites, presumably function as pos-
itive effectors of insulin signaling (76).
Once phosphorylated by PKBa, they
serve to protect IRS proteins from the
rapid action of protein Tyr phosphatases.
In such a way, PKBa acts to propagate and
accelerate insulin signaling by phosphor-
ylating downstream effectors and by
phosphorylating IRS proteins, thus gen-
erating a positive feedback loop for insu-
lin action. Both Ser/Thr kinases that
phosphorylate IRS-1, the PKB-positive
regulator and the wortmannin-sensitive
negative regulator, are downstream effec-
tors of PI3-K. This suggests that their ac-
tion should be orchestrated in a way that
enables sustained activation of IRS-1, as a
result of phosphorylation by PKB, before

the activation of the negative regulator
whose action is expected to terminate in-
sulin signal transduction.

Other aspects of insulin signaling are
also subjected to homologous desensiti-
zation. Chronic stimulation with insulin,
similar to that seen in hyperinsulinemic
type 2 diabetic patients, not only down-
regulates the IR number, but also results
in persistent phosphorylation of mSOS,
which keeps it dissociated from Grb2 and
allows Ras to return to its GDP-bound in-
active phase (106). This result is appar-
ently mediated by the MEK and MAP
kinase that phosphorylate mSOS
(107,108). In contrast, intermittent insu-
lin stimulation does not induce such de-
sensitization (109). Hence, the two major
insulin-signaling pathways, those medi-
ated by IRS proteins and those mediated
by Shc, are subjected to homologous de-
sensitization in the form of insulin-
induced Ser/Thr phosphorylation. This
conclusion steers us in the direction of
potential pharmacological interventions
in disease states in which this mechanism
can be the underlying cause of insulin re-
sistance.

CONCLUSIONS — Our understand-
ing of insulin signal transduction path-
ways and insulin resistance has evolved
extremely rapidly over the past few years.
Still, further studies are required to un-
ravel the mechanisms controlling these
intricate regulatory processes that pre-
sumably mediate, at least in part, the in-
sulin resistance associated with obesity
and hyperinsulinemia. These new emerg-
ing paradigms and target substrates
should facilitate the development of com-
pounds that will activate or inhibit vari-
ous signaling elements in these cascades,
thereby renewing our hope for new fam-
ilies of therapeutic agents to treat obesity
and type 2 diabetes. Examples of such tar-
geted agents include a recently described
insulin-receptor sensitizer acting on the
kinase domain (110), a newly described
and future PPARg agonists, and drugs
that inhibit the phosphatases, such as
PTP1B.
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