Fate of TiO₂ **nanoparticles in carbonate and silicate aquifers**

RONCHI, B., JORIS, A., JAMIN, P., BROUYÈRE, S., VESCHKENS, M., FRIPPIAT, C.

1. Objective

To assess the vulnerability of silicate and carbonate aquifers to the contaminant of emerging concern nano-sized TiO_2 (nTiO₂), its stability is evaluated in different types of water pumped from carbonate and silicate aquifers and in Milli-Q water. In addition, its behaviour in saturated porous media is evaluated using column test with glass beads, carbonate sands and silicate sands.

2. nTiO₂ characterisation

The nTiO2 are produced at the NCE lab of ULiège. Diameters and zeta potentials are analysed with DLS. The isoelectric point is measured at pH 6. Diameters of nTiO2 aggregates are important (>1µm) and variable.

3. Stability test

Two replicates suspensions of nTiO2 were prepared in 2 types of natural groundwater (filtered at 0.45 μ m) and Milli-Q water. Concentrations of TiO₂ in the supernatant is analysed over time (ICP-OES; HF/HNO₃/H₃BO₃).

mg/l	Method	M40 Chalk	M103 Sandstone & shale
рН	electrode	7.7	7.2
[F ⁻]	IC	0.087	< 0.047
[Cl ⁻]	IC	58.3	61
[SO ₄ ²⁻]	IC	93.3	32
[NO ₃ ⁻]	IC	51	33
Alkalinity	Titration	175	39
[Ca ²⁺]	ICP-OES	103	24
[Mg ²⁺]	ICP-OES	12.4	7.7
[K ⁺]	ICP-OES	2.9	24
[Na⁺]	ICP-OES	19.7	19.3
[Ti ⁴⁺]	ICP-OES	<0.3µg/l	<0.3µg/l

4. Column test

12 cm long-columns are filled with carbonate sands, silicate sands or glass beads. Air was first flushed with CO_2 , then with water.

- 1. First a conservative tracer is injected at a flow rate of 4ml/min.
- 2. Then, a suspension of 150 mg/l of $n\text{TiO}_2$ in Milli-Q water at pH 3.1 is injected at the same rate.
- The outflow is analysed by ICP-OES after a triacid digestion (HF/HNO₃/H₃BO₃) procedure.

Results

Filtration is considered as an active process when the ratio between diameters of nanoparticles and collectors (N_R) varies between 0.002 and 0.15 (Rahman et al., 2013; Xu et al., 2006).

3	carbonate	50	813	0.0615
3	glass	50	1750	0.0286
3	silicate	50	880	0.0568

5. Conclusion

- nTiO₂ sedimentation is 2-3 orders of magnitude faster in neutral natural groundwater than in acid Milli-Q water.
- The transport of theses nTiO₂ is limited in sandy media by filtration, as nTiO₂ aggregates have large diameters.
- The mix of natural minerals in silicate and carbonate sands attenuates naturally nTiO₂transport.
- Questions for future research: study accumulation of nanoparticles in top soils and the evolution of its pollution front.

References: Xu S, Gao B, Saiers JE. Straining of colloidal particles in saturated porous media. Water Resour Res 2006;42 Rahman T, George J , Shipley H. Transport of aluminum oxide nanoparticles in saturated sand: Effects of ionic strength, flow rate, and nanoparticle concentration. Sci Total Environ. 2013;463–464, 565–571. **Acknowledgements:** B.Heinrichs and J. Mahy from NCE (ULiège)