

MTHP: coupling PHREEQC to MT3D-USGS for reactive transport

Bertrand Leterme¹, Cas Neyens², Marijke Huysmans^{2,3} & Diderik Jacques¹ ¹ Engineered and Geosystems Analysis, Institute for Environment, Health, and Safety, SCK•CEN, Mol, Belgium ² Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Belgium ³ Department of Earth and Environmental Sciences, KU Leuven, Belgium *E-mail: bleterme@sckcen.be*

Introduction

A simulation tool is presented for three-dimensional reactive transport in saturated porous media. The code couples the geochemical code **PHREEQC** (Parkhurst and Appelo, 2013) to the existing **MT3D-USGS** (Bedekar et al., 2016). This tool is similar to PHT3D (Prommer and Post, 2010), but eventually the resulting code **MTHP** (**M**odflow **T**ransport **H**ydrus **P**hreeqc) will include reactive transport in the unsaturated zone.

Methods

MCP package

A new package ("MCP") is added to MT3D-USGS. Initial and boundary solutions are defined similarly to the structure of HPx (Jacques and Simunek, 2005; Jacques et al., 2018) A geochemical model can then be defined using the standard PHREEQC utilities (*exchange*, *surface*, *equilibrium phases*, *kinetics*...).

Fig. 1. Snapshot of an MCP file and links to other input files for the geochemical calculations.

User-defined model outputs can be added to the default MT3D-USGS outputs, including time series at observation points and concentration profiles across the domain.

BTN and SSM packages

A few flags and options were added to BTN. The modified SSM package allows PHREEQC solution numbers be applied to sources and sinks.

Results Benchmarking against HPx

Al, Cl and Ca concentrations (mol/kgw) after 100 days

2D simulation of a cation exchange problem:

4.4 × 12 m (45 layers, 240 columns in MTHP), 100 days

mmol / kgw	Initial	Source			
pH CI Ca Mg Na K AI	5.5 0.0001 0.0001 0.75 6 2 0.5	2.9 charge 10 5 1 - 0.1	Cst hydr. head h = 4.5 m	No flow No flow	Cst hydr. he h = 4.4
Cd Zn Pb Br	0.09 0.25 0.1 11.9 charge	- - 3.7	x exchange	e sites 0.001	1 mol/kgw

Discussion

PHREEQC was successfully coupled to MT3D-USGS for simulating geochemical reactions in saturated media. Benchmark examples showed a small discrepancy between MTHP and HPx. This is probably the result of a different dispersion caused by the coarser grid resolution of MTHP (to be investigated ; cf. Cl inert tracer in Fig. 2).

HPx

Perspectives

Further benchmarking examples will be performed to test other geochemical models (precipitation, kinetics...). MTHP will also be compared to PHT3D in order to have identical spatial and temporal discretization.

References

Bedekar et al., 2016, MT3D-USGS version 1.0.0: Groundwater Solute Transport Simulator for MODFLOW: USGS Software Release. Jacques et al., 2005, User manual of the multicompenent variably-saturated flow and transport model HP1 (No. BLG-998). SCK•CEN. Jacques et al., 2018, Journal of Hydrology and Hydromechanics, 66(2), 211-226.

Parkhurst et al., 2013, U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p. Prommer and Post, 2010, PHT3D, A Reactive multicomponent transport model for saturated porous media. User's Manual v2. 10.

Acknowledgements: This research is part of the RESPONSE project, funded by the Belgian Science Policy within the framework of the BRAIN-be programme (contract BR/165/A2/RESPONSE).

SCK•CEN || Boeretang 200 || BE-2400 Mol || www.sckcen.be || info@sckcen.be || Posternr: