

British Geological Survey

Gateway to the Earth

Developing a voluntary European groundwater watch list for substances of emerging concern

Moving on from 'stamp collecting' towards targeted monitoring

Dr Dan Lapworth British Geological Survey, Wallingford, UK

email: djla@bgs.ac.uk

GQ2019 Groundwater Quality Conference, 9th September, Liege, Belgium

Outline

- Introduction: substance of emerging concern in groundwater
- Motivation for developing a voluntary GWWL
- Current methodology
- Some case studies existing evidence
- Initial results from GWWL and future outlook

Lapworth, D.J., Lopez, B., Laabs, V., Kozel, R., Wolter, R., Ward, R., Vargas-Amelin, E., Besien, T., Claessens, J., Delloye, F. and Ferretti, E., 2019. Developing a groundwater watch list for substances of emerging concern: a European perspective. *Environmental Research Letters*. **14** 035004. https://iopscience.iop.org/article/10.1088/1748-9326/aaf4d7/pdf

Gaston, L., Lapworth, D.J., Stuart, M., Arnscheidt, J., 2019. Prioritisation approaches for substances of emerging concern in groundwater: a critical review. *Environ. Sci. & Tech.* 53 (11) 6107-6122

Substance of emerging concern in groundwater

- Anthropogenic organic compounds and their transformation products
- Emerge as result of:
 - Changes in use/new manufactured chemicals
 - Advances in analytical techniques
 - Better monitoring
- ECs in groundwater less well characterised than surface water, mainly due to lower concentrations and perception of lower risk for groundwater
- Most do not have quality standards for either surface or groundwater under the Drinking Water Directive or the WFD (Priority Substances Directive)

Sources of emerging contaminants (ECs) in groundwater

Key pathways to groundwater

© NERC All rights reserved Lapworth et al 2012, Environmental Pollution

Some examples of emerging(ed) organic contaminants

- Pesticides parent compounds (e.g. metaldehyde), metabolites
- Pharmaceuticals human, veterinary, illicit substances...
- "Life style" nicotine, caffeine, artificial sweeteners
- Personal care DEET, parabens, triclosan, musks, UV filters
- Industrial additives and by-products dioxanes, bisphenols, MTBE, phthalates, N-butyl benzene sulfonamide (BBSA)
- Food additives BHA, BHT
- Water and wastewater treatment by-products NDMA, THM
- Flame/fire retardants PBDE, alkyl phosphates, triazoles
- Surfactants alkyl ethoxylates, PFOS & PFOA
- Hormones and sterols estradiol, cholesterol

Transformation products

- May be more toxic, polar or persistent than the parent
- TP concs >parent have been seen for*:
 - Cotinine from nicotine
 - Clofibric acid from clofibrate
 - Nonyl phenol from NPE
 - Desethyl, desisopropyl atrazine
 - BAM from diclobenil
 - AMPA from glyphosate
- Cannot be reliably predicted from surface environments data due to different geochemical conditions and long residence times
- May have long arrival time due to thick unsaturated zone or low aquifer permeability

*Stuart & Lapworth (2014) Transformation products of emerging organic compounds as future groundwater and drinking water contaminants. In: Transformation products of emerging contaminants in the environment: analysis, processes, occurrence, effects and risks. Wiley

Past example: metaldehyde

- 2007 Bristol Water detected it in finished drinking water
- Reasons for metaldehyde problem resistance to DW treatment and difficulties of detection. Low affinity for organic carbon.
- Only emerged as a problem due to developments in analytical methods ^[4]
- Accounted for a significant proportion of failures in drinking water standards in UK (2009) onwards
- Guardian 2013: 'Slug poison found in one in eight of England's drinking water sources'

Prelude: working towards to the GWWL

Lapworth et al., 2019. ERL

Context & motivation for a GWWL

- Enough evidence from some compounds (e.g. some PFAS)
- But.. limited evidence available for a large number of compounds
- Difficult to form policy for potentially new substances of concern
- No strong regulatory driver to monitor for new ECs
- High cost of monitoring and the need to prioritise effort
- Few groundwater specific prioritisation studies for ECs ^[5]
- Limited sharing of information on ECs between states and/or agencies

^[5] Gaston et al 2019, ES&T

Principles behind the GWWL

GWWL – dynamic list of c. 10 organic compounds

Striking a pragmatic balance between:

Safeguarding drinking water supply for future generations & costs associated with monitoring for ECs

Prioritise based on:

- Existing monitoring data
- Environmental exposure, mobility data
- Toxicity and relative risks posed to groundwater
- Multi stakeholder input to develop methodology
- Voluntary initiative between European countries/agencies
- Regular meetings of the GWWL working group to develop a GWWL methodology

Overview of prioritisation methodology - Data input

Prioritisation based on occurrence data

- Aggregate all available groundwater data for ECs
- Ranked list of substances based on frequency of detections and number of countries (*i.e. not a local issue*)
- Pilot studies for pharmaceuticals and PFAS helped develop a reporting protocols for this step
- Generates a ranked list of substances based on occurrence

Prioritisation based on persistence and mobility

- Assess leaching potential to groundwater and mobility in groundwater
- Combination of measured and theoretical physiochemical properties
- Persistence half life in soil or water
- Mobility potential to move conservatively in water (Kow, Koc ionic form etc)
- Scores combined to give a ranked list of substances based on persistence and mobility

Prioritisation based on hazard - toxicity

 Hazard score based on persistent, bioaccumulative, and toxic (PBT), vPvB (very persistent and very bioaccumulative), carcinogenicity-mutagenicityreprotoxicity (CMR) or endocrine disrupting (ED) potential

- High uncertainty in this step due to paucity of data for some substances
- Combined hazard score produces a ranked list based on potential bioaccumulation and toxicity hazards

Overview of prioritisation methodology

Lapworth et al., 2018. ERL

I) Perfluoralkyl substances (PFAS) in Europe

Good agreement between step I and II for top ranked substances and overall relationship between score and participant numbers – also, good evidence that voluntary participation can deliver meaningful results

Lapworth et al., 2018. ERL

August 2016: Unsafe levels of PFAS detected in drinking water for 6 million Americans

Hu et al 2016, ES&T Letters

© NERC All rights reserved

II) Pharmaceuticals in European groundwater

Results from top 30 substances ranked by number of participating countries

Lapworth et al., 2018. ERL

Pharmaceuticals (yellow) in groundwater in England

Lapworth et al., 2019. BGS Technical Report

Good coverage for parts of England – poorer coverage for large parts of UK and elsewhere in Europe – limited LCMS data available

2019

2016

Environment Agency

Lapworth et al., 2019. BGS Technical Report

Summary

GWWL: recent activities

- Case studies on PFAS and pharmaceuticals show there are 12 substances which fulfil the criteria to integrate in to the 'list facilitating Annex I/II process' – *i.e. there is adequate evidence* and will <u>not</u> be part of the GWWL
- 2 pharmaceuticals (carbamazepine and sulfamethoxazole)
- 10 PFAS (top 10 from combined ranked list)

GWWL: new candidates

- 2 further PFAS substances which are highly ranked
- 9 further pharmaceuticals including 2 substances on the SWWL
- First GWWL formally agreed by EU working group on groundwater in April 2019 in Bucharest
- Future work to focus on following groups of compounds: Vet. medicines, plasticisers, surfactants, biocides, PMT list

Conclusions

- Success story: 10 substance now can be considered under review of current priority substances and taken off the GWWL
- Good example of how voluntary schemes can work well in helping prioritise groundwater monitoring!
- But... relies on continued participation from European countries in voluntary monitoring and data sharing
- New GWWL substances can be included for which there is currently inadequate data for assessing as part of annex I and II of GWD review.

Future outlook

- Current political context may make this more difficult in the future
- Great potential for use of low cost broad screening methods – in many ways it is now difficult to make arguments for not monitoring purely on basis of cost
- GWWL makes it difficult to argue for not monitoring on the basis of 'limited prioritisation'
- Anti Microbial Resistance (AMR) is starting to make people sit up and think about the impact of complex mixtures of organics in the environment

Moving on from 'stamp collecting' towards targeted monitoring

Acknowledgements

BGS colleagues – particularly Marianne Stuart

Lopez, B., Laabs, V., Kozel, R., Wolter, R., Ward, R., Vargas-Amelin, E., Besien, T., Claessens, J., Delloye, F. and Ferretti, E., Gaston, L....

Thanks for listening

Any questions?

