Characterizing Groundwater Recharge in the Human Environment: A Case Study Eawag: Swiss Federal Institute of Aquatic Science and Technology

Robin Weatherl

Supervisor: Prof. Mario Schirmer Co-author: Maria Henao Salgado, Msc.

Liège, Belgium September 9, 2019

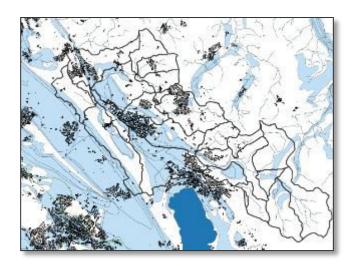
Introduction: Groundwater Recharge

- eawag aquatic research 8000
- Groundwater recharge is one of the least understood components of the water cycle
- Human land development has created additional complexity to groundwater recharge dynamics !
- The rate, timing, and location of recharge are consequential for resulting groundwater quantity and quality

Global Objective: Explore the influence of human land development on groundwater recharge and associated flow pathways

Methods

- 1. Design and install a **groundwater monitoring network** at the site of investigation
- 2. Quantify the **annual change in groundwater storage**, accounting for changes in variables including evapotranspiration and **surface runoff**
- 3. Explore the use of **chemical and isotopic tracers** to identify anthropogenic recharge sources and associated processes
- 4. Combine physical and chemical data to improve the local **conceptual groundwater model** that accounts for artificial influences


Case Study: Fehraltorf and the Kempttal Aquifer

Catchment Characteristics

- Altitude: 500 900 masl
- **Size**: 35 km²
- Climate: average yearly rainfall of 1300 mm
- Aquifer geology: shallow, glaciofluvial sediments; significant spatial heterogeneity

Land Use Characteristics

- **Population**: approx. 6300
- Land Use:
 - 53% Agriculture
 - 19% Urban
 - 26% Forest
 - 2% Industrial
- Municipal water supply: 80% sourced from local aquifer

Method	Input	Notes
Water Balance (WB)	Precipitation, evapotranspiration, surface runoff	Accounts for soil type, vegetation type, and permeability
HBV light modelPrecipitation, evapotranspiration, surface discharge		Accounts for river discharge, snowmelt, soil moisture, and groundwater levels

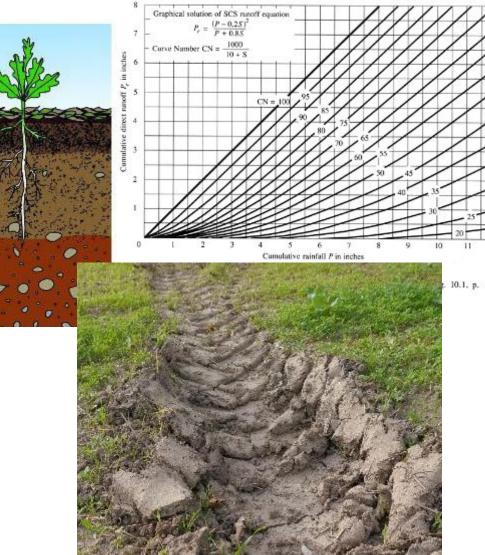
- Evapotranspiration and runoff terms are large sources of uncertainty!
 - Difficult to quantify in the natural environment
 - Changes due to land development bring added complexity
- HBV light model uses measured river discharge in place of estimated surface runoff removing one uncertain variable from the traditional water balance

A Closer Look: Surface Runoff

- **Surface runoff** defined as water that runs off the land surface in response to a storm event, AKA:
 - "Storm water runoff"
 - "Overland flow"
- Soil compaction and impervious surfaces lead to increased runoff
- Acts as a carrier for chemicals from surface, soils, and atmosphere
- Stimulates ''combined sewer overflow'' (CSO) in urban areas, creating a pathway of untreated sewer water into groundwater and surface water

Source: Wikimedia Commons

Surface Runoff

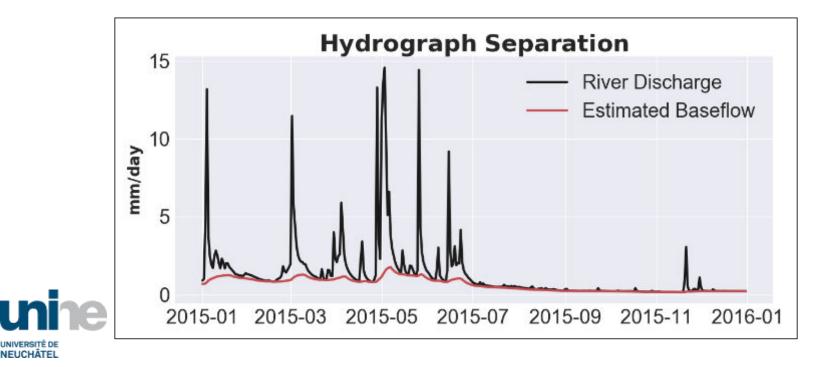

Curve Number (CN) Method

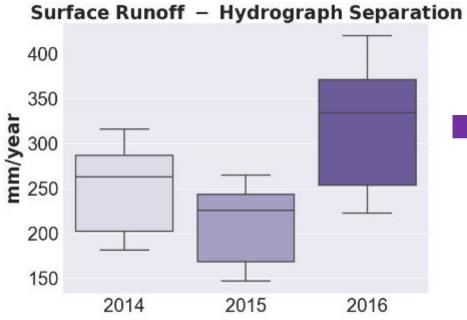
- Direct runoff from rainfall excess estimated from the empirically determined **curve number**
- Determined via soil types, land use, and hydrologic condition

•

NEUCHÂTEL

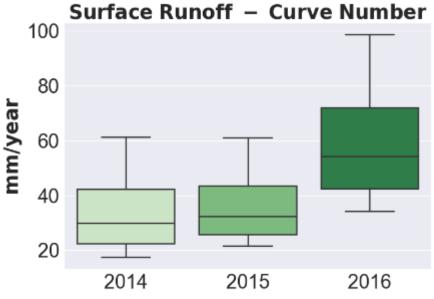
The curve number is constructed from the watershed's conceptual model –cannot be used to directly assess the accuracy of the conceptual model!




Surface Runoff

Hydrograph Separation (HS) via Recursive Digital Filter

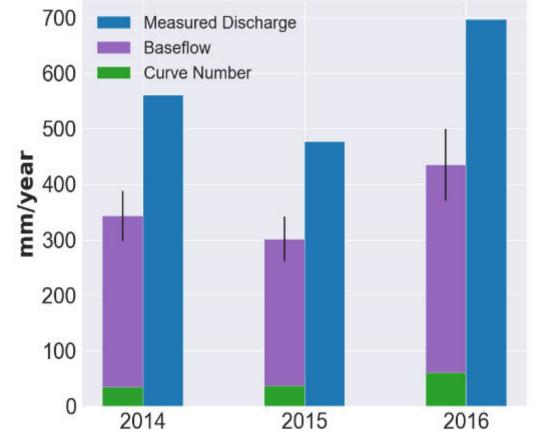
- Automated technique for separating baseflow (groundwater) and quickflow (surface runoff) elements of river discharge
- In it's simplest form, only one input required: time series of river discharge
- Quickflow is 'filtered' from the hydrograph, isolating baseflow



Annual Estimations of Surface Runoff

Year	Mean	Max	Min
2014	251	316	181
2015	212	264	146
2016	322	420	222

aquatic



Year	Mean	Max	Min	
2014	34	61	17	
2015	37	61	21	
2016	60	98	34	

000

Measured Discharge vs Curve Number + Baseflow

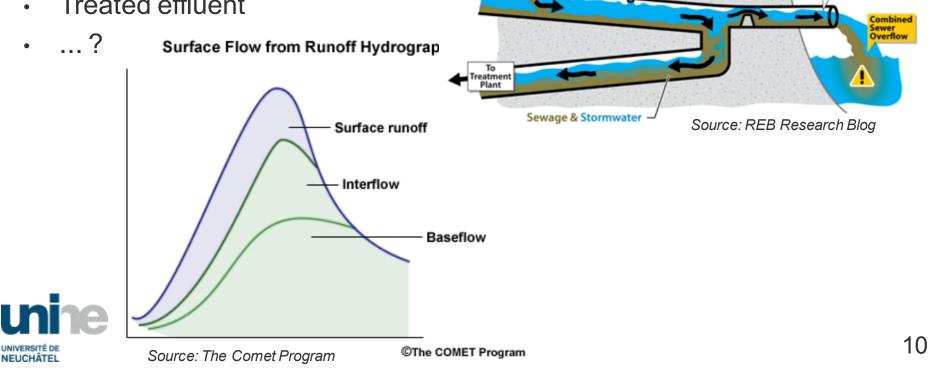
- Curve number may provide a good approximation of pure surface runoff from storm events
- The quickflow element of bivariate hydrograph separation clearly has additional inputs!
 - Need to perform a multivariate hydrograph separation

NEUCHÂTEL

Additional Inputs to River Discharge

Outfall pipe to waterway

Hydrograph separation – a bivariate model is not enough!


SEWER FLOW

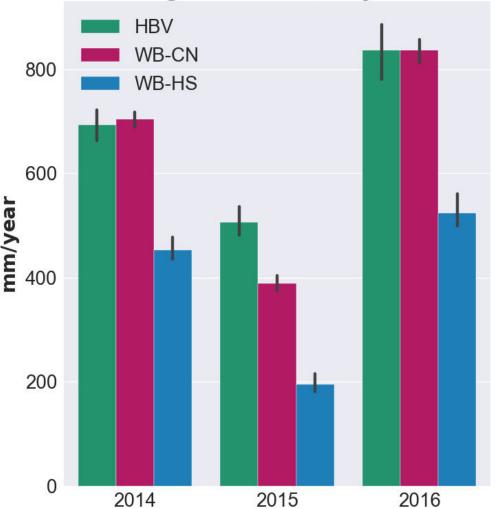
During Heavy Rain

Storn drain

What other elements might be present?

- Soil water •
- Sewer water during combined-• sewer overflow
- Treated effluent

Comparing Estimates of Groundwater Recharge


Estimates – Average Values

Year	HBV	CN	HS
2014	705	717	424
2015	515	379	198
2016	863	848	520

Uncertainties

- No method explicitly accounts for interflow!
- Hydrograph separation likely overestimates runoff and underestimates recharge
- HBV and CN assume infiltration = recharge – likely overestimate recharge

Recharge Estimates by Method

Next Steps

Assessing and Improving Groundwater Recharge Estimates

- Improvement in estimates of surface runoff
- Construction of a numerical model to compare with empirical methods

Chemical and Isotope Analyses

- Construct an isotopic mixing model (3+ components) for more precise hydrograph separation
- Mass balance of organic micropollutants to evaluate their utility as a tracer for sources of recharge and flow pathways

Conceptual model


Combined analysis of independent data: multicomponent statistical analysis to identify correlations and trends

Thank You !

