4D groundwater protection (Van Loon e.a.)

4D groundwater protection: Concepts and strategies for sequring drinking water resources in changing world

Arnaut van Loon Bas van der Grift **Niels Hartog**

Groundwater abstraction for drinking water production in The Netherlands

Confined:

- V: 400 Mm³/y
- T: 20-25.000 y

Unconfined

V: 300 Mm³/y

T: 2-200 y

2

Groundwater protection in The Netherlands

Concepts developed during 1980's

Zone	Aim	Basis	Premise
1	Microbiological stability	60 d	Survival pathogens
2	Prevent chemical contamination	25 y	Intensify treatment of
3	Sustain integrity of confining layers	100 y	Precaution

4D groundwater protection (Van Loon e.a.)

or reallocate

Reconsidering groundwater protection strategies Push factor 1: Emerging subsurface technologies

Impact:

- **Risks of quality deterioration**
- Depletion of alternative groundwater sources, reallocation not/hardly possible

4

Reconsidering groundwater protection strategies Push factor 2: Water Framework Directive

(7.3) Water used for the abstraction of drinking water:

"Avoid quality deterioration in order to reduce the level of purification treatment"

Parameter	N well fields	
N-fertilization	37 (19%)	
Pesticides	52 (27%)	
Soil contaminants	57(30%)	
Emerging substances	11 (6%)	
Total "at risk"	100 (52%)	

- Groundwater quality increasingly under pressure
- Need for quality improvement

Protecting recharge areas as a whole Some practical isues

Travel time to abstraction wells

Cumulative area distribution (α =0.95)

Recharge area (13-26 km²)

- Large spatial claim ۲
- **Spatial coherence** •
- Uncertainty ٠
- Sensitive for changes in watermanagement •

4D groundwater protection (Van Loon e.a.)

4D grondwater protection

A risk-based approach to secure drinking water sources

- **2D: Protection areas**
- Focus on land use •

3D: Volumes

• Spatial properties of groundwater flow, surbsurface and activities

4D: future

•

4D groundwater protection (Van Loon e.a.)

Scenario's and projections

3D spatial planning

Example: ATES near groundwater abstraction

Watercycle Research Institute

KWR

- Not allowed •
- Allowed •
- **Conditionally allowed** •

4D groundwater protection (Van Loon e.a.)

Invitation policy for desirable activities or functions

Example: active nature management

Groundwater recharge under nature reserves:

- Low in nitrate compared to agriculture (1:3) •
- Low in pesticides (1:100.000)

Vegetation	ETpot (mm/y)	R (mm/y)
Coniferous forest	700	150
Deciduous forest	600	220
Heather land	450	390

Rewet nature reserves through active management and reducing drainage intensity

4D groundwater protection (Van Loon e.a.)

Impact reduction by soon intervention

Example: semi-continuous monitoring near geothermal injection well

Adaptive strategies

Example: adaptation paths for implementing a geothermal power station

"Sustainable at last" Supplier?

11

"Economy first"

Enforce legal position

Effect-oriented measures

Conclusions

4D groundwater protection:

- A risk based approach that explicitely accounts for different aspects of 3D space and time;
- Provides solutions to safeguard drinking water resources in urbanised or urbanising areas;
- Requires sufficient knowledge, data and forensic techniques for risk identification and management.

Contact

Arnaut.van.Loon@kwrwater.nl

More articles, images and videos in our online annual report

annualreport.kwrwater.nl

© KWR Watercycle Research Institute