

Dynamic interfaces and their influence on groundwater biogeochemistry

Gudrun Massmann & Janek Greskowiak Hydrogeology & Landscape Hydrology

Surface water – groundwater exchange

Winter et al. (1998), USGS Circular

Hyporheic exchange versus serial exchange

SW-GW exchange at the coast

Different "interfaces"

SW–GW interface

Interface between chemically different water bodies

Characteristics of the SW-GW exchange zone

- Mixing zone of waters with distinctly different water chemistry
- Strong gradients (hydraulics, temperatures, density, biogeochemistry)
- High microbial activity
- (Variable) input of organic matter and electron acceptors
- Often very dynamic (hydraulics, temperatures, biogeochemistry)

\rightarrow Effective bioreactors

Objectives

- To give two distinctly different examples for dynamic SW-GW exchange and its effect on groundwater quality:
 - Effect of transient pumping and SW temperatures on redox conditions (and trace organic compounds) during bank filtration in Berlin (urban environment)
 - 2. Effect of tides, morphodynamics and storm floods on geochemical patterns below a (pristine) high-energy beach

Bank filtration in Berlin

- Natural and Artificial Systems for Recharge and Infiltration (NASRI, 2002-2005)
- Redox sensitivity and long-term persistence of organic trace pollutants in groundwater: Wastewater-bound compounds (DFG project, 2010-2014)
- Development of operating strategies for an improved removal of organic micropollutants during the process of bank filtration (2015-2016)
- Operation strategies and technologies for water reuse to support drinking water supply in urban areas (TrinkWave, 2016-2020)

Bundesministerium für Bildung und Forschung

Objective and motivation

- To elucidate behaviour of trace organic compounds (TOrCs) during bank filtration in a partially-closed urban water cycle
- Motivated by the fact that managed aquifer recharge (MAR) can help ease water stress and improve water quality (and provides drinking water for Berlin)

Bank filtration

Study site Berlin

- "Lakes" with strong seasonal temperature fluctuations
- Locally high proportion of treated WW →TOrCs

Bank filtration

adapted from Dillon et al. (2005) & Berlin Water Company

Column experiments on seasonal TOrC attenuation

TOrC attenuation is function of temp. & redox conditions

Burke et al. (2014), STOTEN

TOrC attenuation is function of temp. & redox conditions

- • mean values (n=3), end bais indicate standard
- removal, simulated (upper part of the column)
- -- removal, simulated (lower part of the column)

Factors influencing primary degradation

Research transect and numerical reactive transport model $_{\scriptscriptstyle \rm NW}$

Henzler et al. (2014), J Cont Hydrol

Bank filtration

Temperature dependent reaction kinetics

Empirical fomulae after O' Connell (1990), Kirschbaum (1995, 2000)

Redox zones during bank filtration are highly transient

SW-GW exchange in the subterranean estuary

- Formation, Characterization and Groundwater Flow Patterns of a Barrier Island Freshwater Lens (Spiekeroog, Northwest Germany) (Dissertation project Tania Röper 2014)
- Assessment of ground- and porewater-derived nutrient fluxes into the German North Sea – Is there a *"Barrier Island Mass Effect"*? (BIME 2016-2020)

Objectives and motivation

- To elucidate coupled flow and biogeochemical processes in the subterranean estuary to understand its role with regard to elemental fluxes to the sea
- Motivated by the fact that SGD fluxes affect coastal ecosystems

The subterranean estuary under tidal influence

e.g. after Michael et al. (2005), Nature Letters

The subterranean estuary under tidal influence

Subterranean estuary

Field site on barrier island Spiekeroog

- High energy beach
- Mean significant wave height 1.4 m
- Tidal range 2.7 m
- Runnel and ridge system

First model confirms "classic" salinity distribution

Beck et al. (2017), Marine Chem

Subterranean estuary

Tank experiments on flow stability

- grain size sand: 0,71–1,4 mm
- hydraulic conductivity (m/s):
 - 8,5*0⁻³ (sieving)
 - 1,38*10⁻² (numerical model)
- SGD rate: 1,2 l/h

- tidal amplitude: 5 cm
 - period length: 2 min
- saltwater density: 35 g/l
- Tracer uranine: 1 g/l

Röper et al. (2014), Limnol Oceanogr

Tank experiments on flow stability

Saltwater inflow

Tidal amplitude

Subterranean estuary

Instabilities appear at flat slopes (1:12)

Röper et al. (2014), Limnol Oceanogr

Stable versus instable flow as function of beach slope

Röper et al. (2014), Limnol Oceanogr

Field data from grid sampling campaign (BIME project)

 Seasonal near-surface porewater sampling (50 & 100 cm depth) of the intertidal zone (200*200m grid)

Subsurface flow is function of (highly variable) topography

- Si concentrations increase with residance time → elevated at discharge locations
- Si gradients (conc_{100cm} conc_{50 cm}) reveal recharge (red) and discharge (blue) locations following topography

Waska et al. (2019), Frontiers Mar Sci

Geochemical (O_{2.} Fe, FDOM) patterns are transient

Subterranean estuary

Semi-generic reactive transport model

- SEAWAT/PHT3D model resembling Spiekeroog beach
- Time-variant 3rd type flow boundary at top to (indirectly) account for variable topography
- Three storm-floods per year
- Temperature dependent kinetic redox reactions
- Seasonal oxygen and nitrate input
- No calibration with field data

Salinities, temperatures & redox zones highly dynamic

Greskowiak & Massmann (in prep.)

Summary & conclusions

- Seasonal SW temperatures (electron acceptors & DOC input, pumping) cause highly transient subsurface redox conditions during bank filtration → TOrCs affected
- Flow conditions below high-energy beaches most likely highly dynamic, as are geochemical patterns and fluxes
- More high-resolution sampling (time and space) needed to resolve SW-GW exchange processes
- Reactive transport models necessary as transience and interdependencies between morphodynamics, densities, temperatures, redox conditions, attenuation of pollutants cause complex (often non-intuitive) patterns

Thank you to all co-authors of studies cited

- Berlin: T. Asmuß, V. Burke, R. Bremermann, U. Dünnbier, J. Greskowiak, A. Sperlich, T. Taute
- Spiekeroog: J. Ahrens, Ahmerkamp, M. Beck, T. Birner (Röper), S. P. Böning, H. J. Brumsack, J. Degenhardt, T. Dittmar, C. Ehlert, B. Engelen, J. Greskowiak, N. Grünenbaum, M. Holtappels, K. Pahnke, H. K. Marchant, D. Meier, B. Schnetger, K. Schwalfenberg, H. Simon, V. Vandieken, H. Waska, O. Zielinski
- ... and many more

Transient interfaces throughout subterranean estuary

O₂ reduction (oxic)

$$r_{ox} = -k_{ox} \left(\frac{C_{ox}}{K_{ox} + C_{ox}} \right) f_T$$

Nitrate reduction (suboxic)

$$r_{nitr} = -k_{nitr} \left(\frac{C_{nitr}}{K_{nitr} + C_{nitr}} \right) \left(\frac{K_{ox_inh}}{K_{ox_inh} + C_{ox}} \right) f_T$$

Iron/Sulfate reduction (anoxic/sulfidic) if O₂ and Nitrate are gone

$$r_{fe} = k_{fe} f_T \qquad r_{HS} = -r_{SO_4} = k_{SO_4} f_T$$

If $C_{HS} > 10 \ \mu mol/L \rightarrow$ sulfidic conditions

$$f_T = e^{\left(\alpha + \beta T \left((1 - 0.5 \frac{T}{T_{opt}})\right)\right)}$$
(O' Connell, 1990)

Temperature T

 f_T

TOrC attenuation is function of temp. & redox conditions

warm/oxic > cold/oxic > warm/transition zone (=Mn-reducing)

Burke et al. (2014), STOTEN

TOrC attenuation is function of temp. & redox conditions

warm/oxic > cold/oxic > warm/transition zone (=Mn-reducing)

Burke et al. (2014), STOTEN