

Increase of Arsenic In Production Wells In The Formation of Diest, Belgium

Alexander Vandenbohede

De Watergroep, Water Resources and Environment alexander.vandenbohede@dewatergroep.be

groundwater extraction site 'Lommel'

groundwater extraction site 'Lommel'

De Watergroep WATER. VANDAAG EN MORGEN.

groundwater extraction site 'Lommel': arsenic

- geochemistry of the Formation of Diest (different arsenic sources ...) well operation screen location combination of factors ...?
- remediation by well management, ... ?

Water types – Stuyfzand (1993) classification:

- CaHCO30 and CaSO40 in monitoring wells
- CaHCO30 in production wells

Water types – Stuyfzand (1993) classification:

- CaHCO30 and CaSO40 in monitoring wells
- CaHCO30 in production wells

De Watergroep WATER, VANDAAG EN MORGEN.

Water types – Stuyfzand (1993) classification:

- CaHCO30 and CaSO40 in monitoring wells
- CaHCO30 in production wells

Water types – Stuyfzand (1993) classification:

- CaHCO30 and CaSO40 in monitoring wells
- CaHCO30 in production wells

Formation of Diest and water types: a closer look

Diest sands

- glauconite bearing coarse sand
- no carbonate minerals or (micro)fossils
- CaSO4 water
- iron to sulphate reducing

Dessel sands

- glauconite bearing fine sand
- carbonate minerals: calcite, siderite, aragonite shell fragments, microfossils
- CaHCO3 water
- sulphate reducing

Formation of Diest and water types: a closer look

1

			0 -	•. •	and the second	
	SI CaSO₄ water	SI CaHCO₃ water		•		-
calcite	-2 à -5	-0.2 à -1.6	_1 - •	•		
siderite	-2 à -6	0.5 à -0.5	-2 -			
goethite	0 à -3.4	-0.2 à -0.8	S.			
hematite	2 à -5	0.5 à 1.6	-3			
			-4 -•			

ò

005

300 g 00

-

conceptual model for the increase of arsenic

Diest sands

CaSO4 water, undersaturated for calcite, siderite, ...

sediments contain no carbonates

Dessel sands

CaHCO3 water, saturated for calcite, siderite, ...

sediments contain carbonates

conceptual model for the increase of arsenic

some calculations

extracted water

- > 16% from Diest sands
- ➢ 84% from Dessel sands

phreeqC calculations

CaSO4 water equilibrated with calcite and siderite

> 2.3 E-4 mol siderite dissolves to equilibrate 1 l of water

005

based on isothermes (Hajji et al, 2019), this gives arsenic concentrations in the observed range

other explanation?

- glauconite in sediments
 - occurs in both Dessel and Diesel sands
 - process to disturbe equilibrium?
- fluorapatiet in Dessel sands

other explaniation?

- glauconite in sediments
 - occurs in both Dessel and Diesel sands
 - difference with monitoring wells?
- fluorapatite in Dessel sands
 - no relation between fluor and arsenic
- well management
 - frequent stand-stills
 - exchange of water is small

other explaniation?

- glauconite in sediments
 - occurs in both Dessel and Diesel sands
 - difference with monitoring wells?
- fluorapatiet in Dessel sands
 - no relation between fluor and arsenic
- well management

...

- frequent stand-stills
- exchange of water is small
- local horizons with higher arsenic

conclusion

- high arsenic concentrations in production wells are most probably related to leakage of water from above the screen level
- dissolution of siderite could increase arsenic
- increase is clearly due to the extraction hence the difference with monitoring wells
- importance of having monitoring wells besides checking groundwater quality in production wells
- an issue that can not be resolved by well management, only by positioning extraction well screens in a clever way

