

Groundwater Quality 2019

10th September 2019. Liège, Belgium

S04 Groundwater quality at interfaces

Potential uses of pumped urban groundwater: A case study in Sant Adrià del Besòs (Barcelona, NE Spain)

<u>Anna Jurado^{1,2}, Enric Vázquez-Suñé², Estanislao</u> Pujades^{2,3}

¹ Institute for Groundwater Management, Technische Universität Dresden, Germany
² GHS, Institute of Environmental Assessment & Water Research (IDAEA), CSIC, Barcelona, Spain

³ Department of Computational Hydrosystems, UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany

GOULAND COUNTRY OF THE SECOND SECONDO SECOND SECONDO SECONDO SECONDO SECOND SECONDO SECOND SE

Urban aquifers might be an alternative freshwater resource

Urban aquifers might be an alternative freshwater resource

Groundwater extraction Besòs River Delta (NE Barcelona, Spain) ** 70 8 ual groundwater pumping Underground parking lot located 200m from •••• Groundwater level (m a.s.l.) 1 st Story the river Besòs 60 5 2nd Story 50 2 **3rd Story** (Hm3) 40 -1 REGA -4 30 SAN3 -7 20 SCO1 - 10 10 An Underground - 13 MONS parking Jan-75 lan-85 Jan-05 Jan-65 Jan-95 Evolución de las extracciones **Besòs River Delta** 70 Groundwater extraction (Hm3) 60 extracción (hm3/año) ĥ 50-40 30-20 m 2000 1000 3000 4000 0 10-0 4 1970 1976 1983 2000 1966

Underground parking lot of Plaça de la Vila (Sant Adrià del Besós) December 1971

- Groundwater infiltration problems since 1971
- ✤ 1972-2005 → Continuous groundwater pumping to keep the 3rd story dry
- ♦ Until 2005 \rightarrow 5 pumpings wells extracting up to 350 l/s

Shutdown of the pumping wells

2 hours

4 hours

- Groundwater infiltration problems since 1971
- ♦ 1972-2005 → Continuous groundwater pumping to keep the 3rd story dry
- ♦ Until 2005 \rightarrow 5 pumpings wells extracting up to 350 l/s
- ♦ Since $2005 \rightarrow 4$ pumpings wells extracting 150-200 l/s
- ✤ Monitoring network of 15 piezometers were constructed

- Groundwater infiltration problems since 1971
- ♦ 1972-2005 \rightarrow Continuous groundwater pumping to keep the 3rd story dry
- ♦ Until 2005 \rightarrow 5 pumpings wells extracting up to 350 l/s
- \diamond Since 2005 \rightarrow 4 pumpings wells extracting 150-200 l/s
- Monitoring network of 15 piezometers were constructed

- <1% of the pumped groundwater is used, the rest is directly poured into the sewage system
- Serious management problems with very high economic costs
 - Pumping equipment maintenance
 - High energy consumption
 - Structural problems due to the dragging of fine materials

Can this pumped urban groundwater (UGW) be used for other purposes (e.g., drinking water) instead of wasting this valuable resource?

Can this pumped urban groundwater (UGW) be used for other purposes (e.g., drinking water) instead of wasting this valuable resource? **3.** To investigate the 1.To quantify the 2. To characterize the evolution of UGW groundwater quality in relation to pollution sources recharge the sources 4. To assess the potential uses of UGW

11

STUDY AREA

Groundwater recharge quantification

Groundwater recharge quantification

Characterization of the pollution sources

Characterization of the pollution sources

End-member mixing analysis (EMMA)

Assessment of the urban groundwater quality

MIX CODE (Carrera et al., 2004)

- Quantifies mixing ratios in the case of uncertain end-members
- Use the concentration of samples (mixtures)

$$\hat{X}_{ij} = \sum_{e} \lambda_{ej} \hat{Y}_{ie}$$

Uncertainty is quantified in terms of standard deviations

Assessment of the urban groundwater quality

Quantify the proportions in which the River Besòs end-members contribute to the resident water of the aquifer

Major and minor ions Vs. RD 140/2003 (sanitary criteria for the quality of water for human consumption)

Compound								
Compound	C1	C2	C3	C4	C5	C6	Cm	RD 140/2003
Chlorida	241.5-308.3	242.3-297.6	249.7-278	181.7-211.8	171.9-221	178.9-213.4	220	250
Chioride	(268.1)	(268.8)	(259.7)	(199.5)	(191.8)	(192.9)	229	230
Culphoto	151.7-172	177.3-181.4	155.3-166.5	139.1-165.1	135.2-158.8	122.7-142.1	155.0	250
Suprate	(164.4)	(179.3)	(160.7)	(150.3)	(146.8)	(135)	155.6	250
Disarbanata	401-455.9	425.4-470.5	403.5-442.5	391.3-433.9	397.8-418.1	367-410	410.1	
Dicaroonate	(428.1)	(449)	(426.6)	(412)	(406)	(399.6)	419.1	-
Calainm	131.4-146.8	137.5-149	129.4-147.9	117.3-135.4	106.4-120.7	92.3-120.9	128.7	
Calcium	(138.6)	(142.7)	(138.7)	(128.2)	(114.6)	(111.4)	128.7	-
Magnesium	28.2-29.6	23.6-33	28.1-31.9	25.2-28.7	21.2-25.3	19.8-25.4	26.0	
	(28.8)	(29.4)	(29.6)	(27.3)	(23.5)	(23.1)	20.9	-
Codin	204-257.3	188.2-211.4	197.4-224	146.3-165.4	119.5-153.4	120.5-157	175.6	200
Sociuli	(225.6)	(200)	(209.1)	(146.3)	(137.3)	(133.8)	175.0	200
Dotoccium	16.3-28.1	18.2-21.2	16.4-24	14.9-21.3	10.5-15.7	11-21.2	17.0	
Fotassium	(21.6)	(20.1)	(20.8)	(17.6)	(13.4)	(14.5)	17.5	-
Nitrata	0-14.3	0-24.7	0.47-10.1	0-3.7	0-12.4	0-13.2	3.0	50
Nuale	(2.9)	(4.3)	(2.3)	(0.8)	(5.9)	(7.3)	5.5	50
Ammonium	2-15.2	4.7-11.8	4-9	2.1-6.3	1.2-5.8	0.6-6.6	5.1	0.5
Annonum	(8)	(7.7)	(6.5)	(4)	(2.7)	(2.2)	5.1	0.5
Electrical	1501-1780	1581-1757	1552-1646	1277-1438	1293-1460	1389-1574	1506.0	2500
conductivity	(1631.2)	(1654.8)	(1595.8)	(1375.5)	(1360.2)	(1444.3)	1500.9	2500

RESULTS&DISCUSSION DRESDEN CONCEPT

Variation of the urban groundwater quality over time

Major and minor ions Vs. RD 140/2003 (sanitary criteria for the quality of water for human consumption)

Comment								
Compound	C1	C2	C3	C4	C5	C6	Cm	RD 140/2003
Chlorida	241.5-308.3	242.3-297.6	249.7-278	181.7-211.8	171.9-221	178.9-213.4	220	250
Chionde	(268.1)	(268.8)	(259.7)	(199.5)	(191.8)	(192.9)	229	250
Sulphata	151.7-172	177.3-181.4	155.3-166.5	139.1-165.1	135.2-158.8	122.7-142.1	155 0	250
Suphate	(164.4)	(179.3)	(160.7)	(150.3)	(146.8)	(135)	155.8	250
Disarbanata	401-455.9	425.4-470.5	403.5-442.5	391.3-433.9	397.8-418.1	367-410	410.1	
Dicarbonate	(428.1)	(449)	(426.6)	(412)	(406)	(399.6)	419.1	-
Calaina	131.4-146.8	137.5-149	129.4-147.9	117.3-135.4	106.4-120.7	92.3-120.9	120 7	
Calcium	(138.6)	(142.7)	(138.7)	(128.2)	(114.6)	(111.4)	128.7	-
Magnesium	28.2-29.6	23.6-33	28.1-31.9	25.2-28.7	21.2-25.3	19.8-25.4	26.0	
	(28.8)	(29.4)	(29.6)	(27.3)	(23.5)	(23.1)	20.9	-
G . 1	204-257.3	188.2-211.4	197.4-224	1-6.3-165.4	119.5-153.4	120.5-157	175.6	200
Socium	(225.6)	(200)	(209.1)	(146.3)	(137.3)	(133.8)	175.0	200
Dotoscium	16.3-28.1	18.2-21.2	16.4-24	14.9-21.3	10.5-15.7	11-21.2	17.0	
Fotassium	(21.6)	(20.1)	(20.8)	(17.6)	(13.4)	(14.5)	17.9	-
Nitrata	0-14.3	0-24.7	0.47-10.1	0-3.7	0-12.4	0-13.2	2.0	50
Muale	(2.9)	(4.3)	(2.3)	(0.8)	(5.9)	(7.3)	3.9	50
Ammonium	2-15.2	4,7-11,8	4-9	2.1-6.3	1.2-5.8	0.6-6.6	5.1	0.5
	(8)	(7.7)	(6.5)	(4)	(2.7)	(2.2)	5.1	0.5
Electrical	1501-1780	1581-1757	1552-1646	1277-1438	1293-1460	1389-1574	1506.0	2500
conductivity	(1631.2)	(1654.8)	(1595.8)	(1375.5)	(1360.2)	(1444.3)	1500.9	2500

RESULTS&DISCUSSION DRESDEN CONCEPT

Variation of the urban groundwater quality over time

Major and minor ions Vs. RD 140/2003 (sanitary criteria for the quality of water for human consumption)

Company	Concentrations (mg/L)							
Compound	C1	C2	C3	C4	C5	C6	Cm	RD 140/2003
Chlorida	241.5-308.3	242.3-297.6	249.7-278	181.7-211.8	171.9-221	178.9-213.4	220	250
Chionde	(268.1)	(268.8)	(259.7)	(199.5)	(191.8)	(192.9)	229	250
Culphoto	151.7-172	177.3-181.4	155.3-166.5	139.1-165.1	135.2-158.8	122.7-142.1	155.0	250
Suphate	(164.4)	(179.3)	(160.7)	(150.3)	(146.8)	(135)	155.0	250
Picerhanata	401-455.9	425.4-470.5	403.5-442.5	391.3-433.9	397.8-418.1	367-410	410.1	
Dicaroonate	(428.1)	(449)	(426.6)	(412)	(406)	(399.6)	419.1	-
Calainm	131.4-146.8	137.5-149	129.4-147.9	117.3-135.4	106.4-120.7	92.3-120.9	120 7	
Calcium	(138.6)	(142.7)	(138.7)	(128.2)	(114.6)	(111.4)	120.7	-
Magnesium	28.2-29.6	23.6-33	28.1-31.9	25.2-28.7	21.2-25.3	19.8-25.4	26.0	
	(28.8)	(29.4)	(29.6)	(27.3)	(23.5)	(23.1)	20.9	-
0.1	204-257.3	188.2-211.4	197.4-224	1-6.3-165.4	119.5-153.4	120.5-157	175.6	200
Socium	(225.6)	(200)	(209.1)	(146.3)	(137.3)	(133.8)	175.0	200
Dotoccium	16.3-28.1	18.2-21.2	16.4-24	14.9-21.3	10.5-15.7	11-21.2	17.0	
Fotassium	(21.6)	(20.1)	(20.8)	(17.6)	(13.4)	(14.5)	17.9	-
Nitroto	0-14.3	0-24.7	0.47-10.1	0-3.7	0-12.4	0-13.2	3.0	50
Muale	(2.9)	(4.3)	(2.3)	(0.8)	(5.9)	(7.3)	3.7	50
Ammonium	2-15.2	4.7-11.8	4-9	2.1-6.3	1.2-5.8	0.6-6.6	5.1	0.5
	(8)	(7.7)	(6.5)	(4)	(2.7)	(2.2)	2.1	0.5
Electrical	1501-1780	1581-1757	1552-1646	1277-1438	1293-1460	1389-1574	1506.9	2500
conductivity	(1631.2)	(1654.8)	(1595.8)	(1375.5)	(1360.2)	(1444.3)	1500.9	2500

Metals Vs. RD 140/2003 (sanitary criteria for the quality of water for human consumption)

Motols -	Concentrations (µg/L)							
Metals	C1	C2	C3	C4	C5	C6	Cm	RD 140/2003
Alternation	7.1-287.6	0.9-601.3	0-59.26	0 <1 00	5.5-23.5	9.5-67.1	52	200
Alummum	(93)	(161.6)	(17.6)	0-<100	(13.8)	(38.4)	22	200
Argonia	2.4-31.1	4-27.5	3.6-32.2	2.1-17.3	1.6-9.1	1.5-14.5	11.7	10
Arsenic	(14.8)	(17.1)	(16.6)	(10.8)	(5)	(6.4)	11.7	10
Peren	260.7-283.3	229.22-298.9	199.3-264.9	138.2-201.7	163.4-244.3	171.6-223.5	224.8	1000
Boron	(270.2)	(266.8)	(231.4)	(177.6)	(207.9)	(202.4)	224.0	1000
Codminm	100	<100	0	0	100	100	0.4	5
Cauntum			(0)	(0)	<re>LOQ</re>	TOG	0.4	,
Character	7.2-12.8	10.3-17.4	9.9-13.2	1.7-18.5	<loq-2.9< td=""><td><loq-2< td=""><td>8.6</td><td>50</td></loq-2<></td></loq-2.9<>	<loq-2< td=""><td>8.6</td><td>50</td></loq-2<>	8.6	50
Chiome	(9.6)	(14.3)	(11.2)	(12.8)	(2.3)	(1.5)	0.0	50
Conner	1.7-5.4	1.6-12.7	1.3-6.4	1.4-13.7	1-2.8	<loq-2.5< td=""><td>3.0</td><td>2000</td></loq-2.5<>	3.0	2000
Copper	(3.6)	(6.3)	(3.4)	(5.8)	(2.1)	(2)	5.5	2000
Iron	128.2-1563.5	59.9-3595.3	65.4-1610.5	19.6-554.7	12-536	19.9-414.7	423.1	200
11011	(589.7)	(891.2)	(509)	(203.6)	(185.5)	(187.2)	423.1	200
Mongonese	175.7-406.6	186.3-588.6	192.5-824.3	64.1-810	2.3-433.2	1.9-382.9	258	50
Manganese	(285.2)	(319.2)	(388.4)	(292.6)	(133.6)	(133.9)	200	50
Nieleel	5.2-8.4	6-8.3	3.4-5	4-6.5	2.2-3	3.8-4.3	5	20
INICKEI	(6.5)	(7)	(4.2)	(5.7)	(2.6)	(4)	5	20
Lead	<loq-1.7< td=""><td>0.81-7.1</td><td><loq-1.1< td=""><td><loq-1< td=""><td>100</td><td><loq-1.5< td=""><td>11</td><td>10</td></loq-1.5<></td></loq-1<></td></loq-1.1<></td></loq-1.7<>	0.81-7.1	<loq-1.1< td=""><td><loq-1< td=""><td>100</td><td><loq-1.5< td=""><td>11</td><td>10</td></loq-1.5<></td></loq-1<></td></loq-1.1<>	<loq-1< td=""><td>100</td><td><loq-1.5< td=""><td>11</td><td>10</td></loq-1.5<></td></loq-1<>	100	<loq-1.5< td=""><td>11</td><td>10</td></loq-1.5<>	11	10
Leau	(1.2)	(3.4)	(0.68)	(0.32)	~LUQ	(0.58)	1.1	10

Metals Vs. RD 140/2003 (sanitary criteria for the quality of water for human consumption)

Matala	Matala Concentrations (µg/L)							
Metals	C1	C2	C3	C4	C5	C6	Cm	RD 140/2003
Ahaminina	7.1-287.6	0.9-601.3	0-59.26	0 <1 00	5.5-23.5	9.5-67.1	53	200
Aummun	(93)	(161.6)	(17.6)	0- <loq< td=""><td>(13.8)</td><td>(38.4)</td><td>22</td><td>200</td></loq<>	(13.8)	(38.4)	22	200
Arconic	2.4-31.1	4-27.5	3.6-32.2	2.1-17.3	1.6-9.1	1.5-14.5	11.7	10
Ausenic	(14.8)	(17.1)	(16.6)	(10.8)	(5)	(6.4)	11.7	10
Boron	260.7-283.3	229.22-298.9	199.3-264.9	138.2-201.7	163.4-244.3	171.6-223.5	224.8	1000
Boron	(270.2)	(266.8)	(231.4)	(177.6)	(207.9)	(202.4)	224.0	1000
Cadmium	<100	400 400	0	0	<loq< td=""><td><1.00</td><td>0.4</td><td>5</td></loq<>	<1.00	0.4	5
Cadmin	LOQ	100	(0)	(0)		204	0.4	5
Chromo	7.2-12.8	10.3-17.4	9.9-13.2	1.7-18.5	<loq-2.9< td=""><td><loq-2< td=""><td>8.6</td><td>50</td></loq-2<></td></loq-2.9<>	<loq-2< td=""><td>8.6</td><td>50</td></loq-2<>	8.6	50
Childhie	(9.6)	(14.3)	(11.2)	(12.8)	(2.3)	(1.5)	0.0	50
Conner	1.7-5.4	1.6-12.7	1.3-6.4	1.4-13.7	1-2.8	<loq-2.5< td=""><td>3.9</td><td>2000</td></loq-2.5<>	3.9	2000
Соррег	(3.6)	(6.3)	(3.4)	(5.8)	(2.1)	(2)	5.7	2000
Tron	128.2-1563.5	59.9-3595.3	65.4-1610.5	19.6-554.7	12-536	19.9-414.7	423 1	200
non	(589.7)	(891.2)	(509)	(203.6)	(185.5)	(187.2)	425.1	200
Manganese	175.7-406.6	186.3-588.6	192.5-824.3	64.1-810	2.3-433.2	1.9-382.9	258	50
manganese	(285.2)	(319.2)	(388.4)	(292.6)	(133.6)	(133.9)	250	50
Nickel	5.2-8.4	6-8.3	3.4-5	4-6.5	2.2-3	3.8-4.3	5	20
THERE	(6.5)	(7)	(4.2)	(5.7)	(2.6)	(4)	2	20
Lead	<loq-1.7< td=""><td>0.81-7.1</td><td><loq-1.1< td=""><td><loq-1< td=""><td><1.00</td><td><loq-1.5< td=""><td>11</td><td>10</td></loq-1.5<></td></loq-1<></td></loq-1.1<></td></loq-1.7<>	0.81-7.1	<loq-1.1< td=""><td><loq-1< td=""><td><1.00</td><td><loq-1.5< td=""><td>11</td><td>10</td></loq-1.5<></td></loq-1<></td></loq-1.1<>	<loq-1< td=""><td><1.00</td><td><loq-1.5< td=""><td>11</td><td>10</td></loq-1.5<></td></loq-1<>	<1.00	<loq-1.5< td=""><td>11</td><td>10</td></loq-1.5<>	11	10
Lead	(1.2)	(3.4)	(0.68)	(0.32)	NOT	(0.58)	1.1	10

Metals Vs. RD 140/2003 (sanitary criteria for the quality of water for human consumption)

Matala	Motols Concentrations (µg/L)								
Metals	C1	C2	C3	C4	C5	C6	Cm	RD 140/2003	
Ahuminiaum	7.1-287.6	0.9-601.3	0-59.26	0 <1 00	5.5-23.5	9.5-67.1	52	200	
Alummum	(93)	(161.6)	(17.6)	0-~LOQ	(13.8)	(38.4)		200	
Arsonic	2.4-31.1	4-27.5	3.6-32.2	2.1-17.3	1.6-9.1	1.5-14.5	11.7	10	
MISCHIC	(14.8)	(17.1)	(16.6)	(10.8)	(5)	(6.4)	11.7	10	
Boron	260.7-283.3	229.22-298.9	199.3-264.9	138.2-201.7	163.4-244.3	171.6-223.5	224.8	1000	
Boron	(270.2)	(266.8)	(231.4)	(177.6)	(207.9)	(202.4)	224.0	1000	
Cadmium	<1.00	<loq <loq<="" td=""><td>0</td><td>0</td><td rowspan="2"><loq< td=""><td><1.00</td><td rowspan="2">0.4</td><td>5</td></loq<></td></loq>	0	0	<loq< td=""><td><1.00</td><td rowspan="2">0.4</td><td>5</td></loq<>	<1.00	0.4	5	
Cadinum	~LOQ		(0)	(0)		100		2	
Chrome	7.2-12.8	10.3-17.4	9.9-13.2	1.7-18.5	<loq-2.9< td=""><td><loq-2< td=""><td>8.6</td><td>50</td></loq-2<></td></loq-2.9<>	<loq-2< td=""><td>8.6</td><td>50</td></loq-2<>	8.6	50	
Childhie	(9.6)	(14.3)	(11.2)	(12.8)	(2.3)	(1.5)	0.0	50	
Conner	1.7-5.4	1.6-12.7	1.3-6.4	1.4-13.7	1-2.8	<loq-2.5< td=""><td>3.0</td><td>2000</td></loq-2.5<>	3.0	2000	
Соррег	(3.6)	(6.3)	(3.4)	(5.8)	(2.1)	(2)	5.2	2000	
Tron	128.2-1563.5	59.9-3595.3	65.4-1610.5	19.6-554.7	12-536	19.9-414.7	423.1	200	
Hon	(589.7)	(891.2)	(509)	(203.6)	(185.5)	(187.2)	740.1	200	
Mongonese	175.7-406.6	186.3-588.6	192.5-824.3	64.1-810	2.3-433.2	1.9-382.9	258	50	
Manganese	(285.2)	(319.2)	(388.4)	(292.6)	(133.6)	(133.9)	200	50	
Nickel	5.2-8.4	6-8.3	3.4-5	4-6.5	2.2-3	3.8-4.3	5	20	
Nekei	(6.5)	(7)	(4.2)	(5.7)	(2.6)	(4)	2	20	
Lead	<loq-1.7< td=""><td>0.81-7.1</td><td><loq-1.1< td=""><td><loq-1< td=""><td><1.00</td><td><loq-1.5< td=""><td>11</td><td>10</td></loq-1.5<></td></loq-1<></td></loq-1.1<></td></loq-1.7<>	0.81-7.1	<loq-1.1< td=""><td><loq-1< td=""><td><1.00</td><td><loq-1.5< td=""><td>11</td><td>10</td></loq-1.5<></td></loq-1<></td></loq-1.1<>	<loq-1< td=""><td><1.00</td><td><loq-1.5< td=""><td>11</td><td>10</td></loq-1.5<></td></loq-1<>	<1.00	<loq-1.5< td=""><td>11</td><td>10</td></loq-1.5<>	11	10	
Leau	(1.2)	(3.4)	(0.68)	(0.32)	~LOQ	(0.58)	1.1	10	

Organic compounds Vs. RD 140/2003 (sanitary criteria for the quality of water for human consumption)

Compound						
Compound	C1	C2	C3	C4	Cm	RD 140/2003
Atrazine	0.0	0.0-0.037 (0.023)	0.0-0.005 (0.002)	0.0-0.011 (0.0042)	0.008	0.1
Diazinon	0.0	0.0-0.012 (0.006)	0.0-0.03 (0.008)	0.00.004 (0.001)	0.004	0.1
TBA	0.012-0.061 (0.041)	0.047-0.096 (0.071)	0.003-0.042 (0.016)	0.0-0.026 (0.011)	0.034	0.1
Terbutryn	0.0	0.056-0.12 (0.088)	0.0-0.022 (0.0053)	0.0-0.004 (0.007)	0.024	0.1
Total pesticides	0.012-0.061 (0.041)	0.17-0.24 (0.19)	0.003-0.01 (0.033)	0.002- 0.041	0.072	0.5
PCE	0.58-1.98 (1.22)	1.06-5.13 (2.43)	1.51-5.25 (2.77)	0.42-44.2 (10.1)	4.13	-
TCE	0-1.25 (0.48)	1.17-4.14 (2.49)	0.59-4.74 (1.96)	0.34-2.1 (1.1)	1.5	-
PCE+TCE	0.58-3.23 (1.7)	2.23-9.2 7 (4.92)	2.14-9.99 (4.73)	0.76-46.3 (11.2)	5.63	10

Organic compounds Vs. RD 140/2003 (sanitary criteria for the quality of water for human consumption)

Compound	Concentrations (µg/L)								
Compound	C1	C2	C3	C4	Cm	RD 140/2003			
Atrazina	0.0	0.0-0.037	0.0-0.005	0.0-0.011	0.008	0.1			
Atrazilie	0.0	(0.023)	(0.002)	(0.0042)	0.008	0.1			
Diazinon	0.0	0.0-0.012	0.0.0.03 (0.008)	0.00.004	0.004	0.1			
Diazinon	0.0	(0.006)	0.0-0.03 (0.008)	(0.001)	0.004	0.1			
TPA	0.012-0.061	0.047-0.096	0.003-0.042	0.0-0.026	0.034	0.1			
IDA	(0.041)	(0.071)	(0.016)	(0.011)	0.034	0.1			
Tophyterm	0.0	0.056-0.12	0.0-0.022	0.0-0.004	0.024	0.1			
Terbutiyii	0.0	(0.088)	(0.0053)	(0.007)	0.024	0.1			
Total pesticides	0.012-0.061	0.17-0.24	0.003-0.01	0.002-	0.072	0.5			
rotar pesticides	(0.041)	(0.19)	(0.033)	0.041	0.072	0.5			
PCF	0.58-1.98	1.06-5.13	1.51-5.25	0.42-44.2	4 13				
TCL	(1.22)	(2.43)	(2.77)	(10.1)	1.1.2	-			
TCE	0-1.25	1.17-4.14	0.59-4.74	0.34-2.1	15	_			
ICL	(0.48)	(2.49)	(1.96)	(1.1)	1.5	_			
PCE+TCE	0.58-3.23	2.23-9.27	2.14-9.99	0.76-46.3	5.63	10			
PUETICE	(1.7)	(4.92)	(4.73)	(11.2)	2.02	10			

Assessing the potential uses of pumped urban groundwater

Human consumption

Need additional treatment

Ex: Aeration (metals), ion exchange with zeolites, biological filters or chlorination (ammonium)

Managed Aquifer recharge

It Improves the quality of infiltrated water It allows water storage in the aquifer

Environmental uses

Contribute to the baseflow of the river (summer)

Hydraulic barrier against seawater intrusion

Urban uses

Water public parks

Cleaning of streets / squares

- There is a huge amount of pumped UGW in shallow aquifer of the Besòs River Delta that are not properly managed.
- The quality of the UGW depends on the quality of the river Besòs water. In general, the UGW is of better quality after periods of rain when the contribution of the wet end-member is more significant.
- If the UGW would be used as potable water, additional treatment would be required because some tracers exceed the limit established in RD 140/2003, which establishes the health criteria for the quality of water for human consumption. The main threats are ammonium and metals manganese, iron and arsenic.
- This methodology can be applied to other aquifer settings with similar purposes.

RESULTS&DISCUSSION DRESDEN Concept

Variation of the urban groundwater quality over time Average river concentrations Vs. Average groundwater Redox indicators (ppm) 1.E+02 ◎ Metals (ppb) Average aquifer concentrations ж METH 0 Pesticides (ppb) ж - DAs (ppt) ж As 1.E+01 *PhACs (ppt) MDMA NO 1.E+00 OC 0, 0 1.E-01 ATRA TERB 1.E-02 NO2 0 1.E-03 1111 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03

Assessment of the urban groundwater quality

