

Experimental automated measures and modelling of CO₂ flows from soils to atmosphere

Isabelle DELSARTE¹, Grégory COHEN^{1, 2}, Marian MOMTBRUN¹, Olivier ATTEIA^{1, 2}

¹ Innovasol, France

² EA 4592 G&E, Bordeaux INP, Bordeaux Montaigne, France

Problematic

Determining the fate and transport of vapours in the subsurface is a challenging task due to subsurface soil heterogeneity

Temporal variability of moisture

• Spatial variability of physiochemical properties

Affect risk assessments

Project Objective

Obtain reliable long term gas fluxes predictions

Strategy

Combining two approaches :

Experiment :

- Gas Flux (flux chamber)
- Soil gas concentrations
- Porosity
- Water saturation
- Residual water saturation

Modelling :

Numerical model MIN3P

Experiments in a controlled natural environment

4

Experiments in a controlled natural environment

Step 1: CO₂ was injected and gas phase concentration were continuously monitored

5

Step 1: CO₂ was injected and gas phase concentration were continuously monitored

6

Step 2: A rainfall event was simulated and CO₂ continuous monitoring during a simulated rainfall event

Experiments results during CO₂ injection:

Experiments results during simulated rainfall event:

Experiments results during simulated rainfall event:

Dissolution of gaseous CO₂ in the aqueous phase (H)

 $F = De \times \frac{dC}{I}$

Surface fluxes decrease 10

MIN3P setup

Media properties:

- Porosity: 0.3
- Water residual saturations: 0.05
- Van Genuchten parameters:

 α = 15.25 m⁻¹
 n = 1.85
- Free-water diffusion coefficient : 1.32x10⁻⁵ m²/s
- Free-gas diffusion coefficient : 1.84x10⁻⁹ m²/s

MIN3P setup

Media properties :

- ≠ porosities
- ≠ Residual water saturations...

MIN3P setup – Model calibration

MIN3P Results

First simulation about predicting CO₂ flux :

MIN3P Results

First simulation about predicting CO₂ flux :

Conclusions and perspectives

- Experimental and modelling flux results showed the importance of interaction between the water and gas phase
- For modelling, good agreement were obtained between experimental and simulated CO₂ profile as well as the rainfall event

In order to obtained reliable long term gas flux, further studies need to be carried out to:

- Improve the MIN3P model to improve the flux values accuracy
- Test this method on real industrial contaminated sites

Thank you for your attention