
10th International Groundwater Quality Conference – September 9-12, 2019 – Liege

Experimental automated measures and modelling of 
CO2 flows from soils to atmosphere

Isabelle DELSARTE1, Grégory COHEN1, 2, Marian MOMTBRUN1, Olivier ATTEIA1, 2

1 Innovasol, France
2 EA 4592 G&E, Bordeaux INP, Bordeaux Montaigne, France

1



Determining the fate and transport of vapours in the subsurface is a challenging task due to 
subsurface soil heterogeneity

Retention Water

Solid Matrix

Soil air VOC 
diffusion

Influence of soil moisture on the VOC diffusion 

Problematic

• Temporal variability of moisture 

• Spatial variability of physiochemical properties

Affect risk assessments
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Combining two approaches :

Obtain reliable long term gas fluxes predictions

Experiment : 

• Gas Flux (flux chamber)

• Soil gas concentrations

• Porosity

• Water saturation

• Residual water saturation

Modelling :

Numerical model MIN3P

Project Objective

Strategy
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soil-air interface
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Step 1: CO2 was injected and gas phase concentration were continuously monitored 

Experiments in a controlled natural environment 
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Step 2: A rainfall event was simulated and CO2 continuous monitoring during a simulated rainfall event
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Experiments results during CO2 injection:

Evolution of CO2 fluxes until stabilization

Average Flow = 
3.5.10-2 g/m2/s

Lysimeter top
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F =  4.3.10-3 g/m2/s
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Experiments results during simulated rainfall event:

Decrease of CO2 fluxex

F =  5.4.10-3 g/m2/s

Rainfall event

Lysimeter top
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Experiments results during simulated rainfall event:
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De : effective diffusion coefficient (m2/s), 
L : thickness (m), C : CO2 concentration (g/m3 ) 

Millington and Quirck relationship (1961) :

Dissolution of gaseous CO2

in the aqueous phase (H)
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Media properties:

• Porosity: 0.3

• Water residual saturations: 0.05

• Van Genuchten parameters: 
α = 15.25 m-1 

n = 1.85

• Free-water diffusion coefficient :
1.32x10-5 m2/s 

• Free-gas diffusion coefficient :
1.84x10-9 m2/s 



Media properties :

• ≠ porosities

• ≠ Residual water saturations…
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Modelling of CO2 concentrations stabilized profile :

MIN3P setup – Model calibration
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Experimental data
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Modelling of rainfall event :

Good agreement

ϴ = 0.2 
Swr = 0.075 

ϴ = 0.254 
Swr = 0.075

ϴ = 0.251 
Swr = 0.25

ϴ = 0.45 
Swr = 0.00

K = 4.625x10-3 m/d
α = 15.25 m-1 

n = 1.85 

K = 4.625x10-3 m/d
α = 15.25 m-1 

n = 1.85 



14

First simulation about predicting CO2 flux : 

MIN3P Results
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First simulation about predicting CO2 flux : 

MIN3P Results
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Conclusions and perspectives

In order to obtained reliable long term gas flux, further studies need to be carried out to: 

• Improve the MIN3P model to improve the flux values accuracy

• Test this method on real industrial contaminated sites

• Experimental and modelling flux results showed the importance of interaction
between the water and gas phase

• For modelling, good agreement were obtained between experimental and
simulated CO2 profile as well as the rainfall event



Thank you for your attention 
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