

TEMPORARY DEPLOYMENT OF SENSORS: A COST-EFFECTIVE APPROACH FOR HIGH RESOLUTION SPATIAL AND TEMPORAL ASSESSMENT OF HYDRAULIC CONDITIONS IN A FRACTURED BEDROCK BOREHOLES

Peeter Pehme, Beth Parker and Jessica Meyer

University of Liege Liège, Belgium 11/09/19

Simplified Discrete Fracture Network (DFN) Approach

SITE CONCEPTUAL MODEL

Assess transport, fate, and impacts to receptors

ROCK CORE CHEM DATA MONTAGE (OPEN & LINED HOLE)

COMMERCIALLY AVAILABLE MULTILEVELS

Solinst

FLUTe

Westbay

From J. Meyer

HEAT TRACER TEST IN FRACTURED SANDSTONE AT AN ISCO PILOT TEST SITE

Test Boreholes

Key Component of Tracer Test Design

- Characterization of Boreholes with DFN
 Technique
- As continuous (temporal & spatial) thermal monitoring as possible
- Comparison of pressure and temperature effects of Injection
- DESIGN MULTILEVEL SYSTEM TO INTERCEPT
 PERMANGANATE INJECTION

Figure 1

WATER FLUTE INSTALLATION

SENSOR ARRAY TEST INTERVALS BASED DFN SUITE OF TECHNIQUES

MONITORING INTERVALS PAIRED SWS DIVER & RBR T-PROBE

HOLES LINED & SENSOR DEPTH CONFIRMED

2 gal/min 4 Days (5760 min) 11,520 gal (43.6m³) @ 36°C (19.6°C ambient) >3mil KJ of Heat Energy

DOLOSTONE AQUIFER BENEATH QUATERNARY DEPOSITS

Sentry Well Pump Test as Time-Elevation-Head

Sentry Well 03 City Pump Test Identifying "Background" for Residual calculations

- Variable Length
 - Rationalized
 - Defensible

REQUIREMENTS:

- Sensors (1 or 2 to dozens), only restriction is space
- Liner
- Spine Line
- Weight
- Hydraulic Perturbation
 - Natural
 - Induced
- Time (weeks many months)

Key Benefits

- Superior Understanding of Hydraulic System & Hydodynamics
- Simple
- Flexibility
 - Time
 - Depth
 - Resolution
 - Reconfigure as needed
 - Broad Variety of Applications
- Cost Effective
 - Parts reusable
 - Robust

Optimize expensive Multi-Levels

OTHER RECENT, CURRENT & PENDING APPLICATIONS

- Long Term Monitoring (Sweden, South Guelph, NWT)
- Cross Hole Monitoring of Packer Testing, (SSFL & BAFF)
- Thermal and Hydraulic Monitoring of Recharge from River (Scout Camp)
- Cross Hole Monitoring of Drilling Program (Hydrite, BC, Sweden)
- Cross Hole Verification and Testing of Methodologies
 - Heat Pulse Flow Meter Techniques
 - DTS & ALS / TVP Thermal Tests
 - FLUTe Profiling

ACKNOWLEDGEMENTS:

- Parker NSERC IRC Funding,
- Boeing (Mike Bower and others) ; CH2M Hill (Kevin Murdoch & crew)
- City of Guelph (Dave Belanger, Peter Rider and others) ; Golder Assoc. (John Piersol, Greg Padusenko)
- FLUTe and Schlumberger for research pricing for liners and transducers,
- University of Guelph G360 staff (especially John Cherry & Ryan Kroeker).

Start at 2019-05-28 9:00

Max Available			Use	Shut Off @
	24000	Mini DIVER	120	2019-06-30 17:00
	48000	Micro Diver/DIVER	100	2019-07-22 22:20
	2000000	RBR Solo	10	2025-09-28 4:34
	3000000	RBR Duet 3	10	2028-11-28 14:20

	Accuracy +/-	Resoloution < than
Temp (c)	0.002	0.00005
Press (dbar)	0.05%	0.001%
20	0.01	0.0002
50	0.025	0.0005
100	0.05	0.001
200	0.1	0.002
500	0.25	0.005
1000	0.5	0.01

Detailed Comparison Sentry Well Pump Test Start Expanded (min vs Elev x 100)

Time-Elevation-Head Plots (TEH)

- 1. Interpolate in Time
- 2. Interpolate in Elevation
- 3. Create a regular (tight) grid of values
- 4. Filter and contour values

Simplified Discrete Fracture Network (DFN) Approach

SITE CONCEPTUAL MODEL

Assess transport, fate, and impacts to receptors

INJECTION INTO RD35

