Integrative Isotope Techniques to Evaluate the Fate and Transport of Nitrogen in an Alpine Foothill Catchment

Izabela Bujak, Christin Müller, Ralf Merz, Kay Knöller GQ2019 Conference, Liège, 11.09.2019

Problem description

Nitrate (NO₃⁻) pollution in EU (2012–2015)

- Groundwater:
 - 13.2% exceedance of drinking water threashold (50 mg L⁻¹)
 - 5.7% 40 to 50 mg L⁻¹
- Rivers:
 - 12% eutrophic
 - 7% hypertrophic

Knowledge gap

Development of effective management strategies requires thorought understanding of the main drivers of nitrate export in large river catchments.

Results

Driver 1

Conclusior

Objective

Our goal

To investigate dynamics of **nitrate** export from a mesoscale river basin impacted by **agriculture** and how it is shaped by different **drivers** using multiisotope techniques coupled with geo-statistical methods and Bayesian mixing models.

Three drivers controlling NO₃⁻ export

Driver 1: microbiological N-turnover processes

Driver 2: land-use

Driver 3: hydrological conditions

Conclusior

Objectives Methodology

SLIDE 4/13

Monitoring

- high spatial resolution seasonal surface water monitoring over several years
- event-based monitoring in selected locations

Methodology

- precipitation
- measured parameters

in field	laboratory
dissolved oxygen	nitrate isotopes ($\delta^{15}N$, $\delta^{18}O$)
temperature	water isotopes (δ ² Η, δ ¹⁸ Ο)
EC	δ ¹³ C of DIC
рН	major ions
	DOC

Data analysis and modelling

- spatio-temporal distribution patterns and correlation analysis
- Top-kriging technique & runoff separation
- Bayesian stable isotope mixing model

Study area

SLIDE 5/13

Driver 1: microbiological N-turnover processes

- correlations: very weak for $\delta^{15}N_{NO3}$ and $\delta^{18}O_{NO3}$, strong for $\delta^{15}N_{NO3}$ and NO_3^-
- **message:** no signal of NO₃⁻ degradation

Driver 2: land-use

Objectives

- correlations: very strong to strong between percentage of land cover and $\delta^{15}N_{NO3}$, and NO_3^- but not for $\delta^{18}O_{NO3}$
- message: high importance, change in source

Driver 3: hydrological conditions

- **correlations:** weak for Q_{spec} and other parameters
- mesage: low impact of dilution, change in sources/pathways

Spearman pairwise correlation matrix

Driver 2

SLIDE 6/13

Driver 1: microbiological N-turnover processes

- analysis of changes along the main river $\delta^{15}N_{NO3,}\,\delta^{18}O_{NO3},\,NO_3^{-},\,NO_3^{-}\ \mbox{loads}$
- analysis of correlations location wise
 $$\begin{split} & \delta^{15}N_{NO3} \text{ vs } \delta^{18}O_{NO3} \\ & \delta^{15}N_{NO3} \text{ vs } \ln(NO_3^{-}) \\ & \delta^{18}O_{NO3} \text{ vs } \delta^{18}O_{H2O} \end{split}$$
- conclusions

in regional scale in-stream denitrification plays only a minor role in Erlauf catchment

Study area

Results

Driver 1

SLIDE 7/13

Driver 2: land-use

- Bayesian stable isotope mixing model
- potential NO₃⁻ sources and their isotopic compositions:
 - 1. atmospheric deposition (AD)
 - 2. manure and sewage (MS)
 - 3. nitrate fertilizer (NF)
 - 4. reduced N sources (RNS)

Study area

Objectives Methodology

Results

Results

Driver 1

Driver 2

Pastures

Urban fabric

Forests

Arable land

Jrban fabric

Land cover [%] Arable land

Artificial, non-agricultural vegetated areas Mine, dump and construction sites Industrial, commercial and transport units

Open spaces with little or no vegetation

Heterogeneous agricultural areas

Driver 3

Sub-catchment

Conclusions

В

13

47

39

А

60

40

-

С

16 **82**

2

SLIDE 9/13

Bayesian stable isotope mixing model

location 븑 A 🚔 B 🗰 C Proportional contribution 1.0 0.8 0.6 0.4 0.2 0.0 NO₃⁻ reduced N atmospheric manure fertilizer deposition sources and sewage Potential NO₃⁻ sources

Study area

Results

Driver 3: hydrological conditions

- low impact of dilution •
- mobilization of the NO_3^- pools from the unsaturated ٠ zone with lower $\delta^{15}N_{NO3}$ coming from RNS and elevated $\delta^{18}O_{NO3}$ caused by the shorter residence time and therefore lower exchange with water $\delta^{18}O$

Objectives

Methodology Study area

Results

Driver 1

Driver 2

Driver 3

Conclusions

Conclusions

Conclusions

- **Driver 1:** NO_3^{-} degradation potential is not sufficient to control the nitrate export
- Driver 2: agriculture is related to a considerable shift in • the proportional contribution of manure and sewage and nitrate loads
- **Driver 3:** different NO_3^- export pathways occur during • base flow and high flow conditions
- **Methodology:** measurement of NO_3^- alone would not be ٠ sufficient to trace all different controls on NO₃⁻ export

Outlook

Tripple catchment study

Thank you for your attention

Contact: izabela.bujak@ufz.de

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675120