Eawag: Swiss Federal Institute of Aquatic Science and Technology



# Isotope tracer investigations of arsenic-affected crystalline bedrock aquifers in W. Africa

Anja Bretzler, Lucien Stolze, Julien Nikiema, Franck Lalanne, Elaheh Ghadiri, Matthias Brennwald, Massimo Rolle, Mario Schirmer









## Hydrogeological system



Geogenic arsenic from the oxidation of sulphide minerals

### Weathering profile:

Residual Fe-oxides

Highly weathered, clayey saprolite

Fissured, fractured parent rock

Unfractured, crystalline basement, Palaeoproterozoic (> 2 Ga)

### **Rural water supply in Burkina**

Communal tube wells Depths: ~35-90 m pH: 6 – 7.5 EC: 200 – 600 µS/cm



### Study site



#### Major geological units



Taoudeni Basin (540-1000 Ma) Continental Terminal (23 Ma)



#### High spatial density sampling

- 29 tube wells
- Major and trace element analysis
- Seasonal variations
- Stable isotopes (<sup>2</sup>H, <sup>18</sup>O)
- Dissolved noble gases





terrigenic He (crust, mantle)

### $\rightarrow$ Each helium «reservoir» has typical <sup>3</sup>He/<sup>4</sup>He ratios









### **Results: Helium isotopes**



ASW: Air-saturated water, atmospheric endmember → Modern recharge, residence time < 60 yrs



11

### Helium vs. $\delta^{18}$ O and arsenic





### Summary



1) Dug wells and shallow tube wells dominated by **modern recharge (< 60 a, measurable tritium)**, some anthropogenic pollution (NO<sub>3</sub><sup>-</sup>)

2) Groundwater with long residence times
(> 10<sup>3</sup> years, high <sup>4</sup>He concentrations)
from fractures isolated from the modern water cycle.

**3)** Geogenic As contamination in wells dissecting mineralised zones. No visible relationship between As conc. and groundwater residence time.