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CASE STUDY INSPIRED BY ATES DESIGN
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-> only wells for the ATES are drillec
-> Only single-well experiments are

Required prediction + uncertainty
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HOW DO WE GET THIS PREDICTION

Datlal . > Models > Prediction
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1S THIS APPROACH SATISFACTORY ?
Models Prediction

Uncertainty ?

Parameterization : zonation, layered model, Estimated
simplification to reduce the number of unknowns, etc. —10 | Real
Choice of the boundary conditions, type of parameters £
(flow, heat transport, etc.) g Calibration Prediction
Deriving models with just single-well data ? 5

(a) Lower part of the aquifer
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Can we make long-term prediction based

I on single-well experiments only ?
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BREAKING THE LINE

Bayesian Evidential Learning

New paradigm

@5. Data
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5. Predictions

1. Prior
Models

(Hermans, 2017, GW)

. We generate realistic models (not

calibrated) based on our geological
knowledge

. We simulate our data sets and our

prediction

. We assess the sensitivity of both: Is

the data informative ?

. We seek a direct relationship between

data and prediction

. We estimate the real prediction

based on field data



HEAT STORAGE IN ASHALLOW AQUIFER

Depth (m)
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Simulation of an ATES system
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GENERATING MODELS

Models What do we know, what do we ignore ?
Parameters Status Value
Mean of log,, K (m/s) Variable U[-4 -1]
Variance log,, K (m/s) Variable U[0.05 2]
Range (m) Variable U[1 10]
Anisotropy ratio Variable U[0.1 0.5]
Orientation Variable UI[0 =]
Porosity Variable U[0.05 0.30]
N 500 realizations = Gradient (%) Variable  U[0.083 0.167]
i prior models |
GHENT Other parameters Fixed
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SENSITIVITY ANALYSIS OF THE PREDICTION

Distance-based global

Prediction sensitivity analysis (DGSA,
Park et al., 2016, C&G)
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IDENTIFICATION OF INFORMATIVE DATA SET(S)

Designing an informative experiment

Data Push-Pull test ?

Standard Push-Pull test
Injection 3m3/h +25°C for 6h
Storage for 91h

Pumping 3ms3/h for 15.5 h
Temperature at the well

Kmean
Kvar
anisotropy

gradient

range

orientation

porosity

grien@ation -
poresity

rafige gradient

Time (in days after injection starts)
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ARE OUR PRIOR MODELS CONSISTENT ?

10

Second dimension (0.8 %)
=

» Prior models
= Field data
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LEARNING STEP
Finding a direct relationship between data and prediction-

Prediction
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LEARNING STEP
Finding a direct relationship between data and prediction-

1. Dimension
reduction (PCA)

2. Linearization
(CCA)

3. Kernel density
estimation
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correlation = 0.97
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ESTIMATING THE PREDICTION + UNCERTAINTY

1) Sampling the posterior in reduced dimension space
2) Back-transform the samples in the original space
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EXPERIMENTAL DESIGN

Bayesian Evidential Learning

5. Predictions Now that we have a framework to quickly
estimate uncertainty

- We can use It to test hypothesis and
optimise data acquisition

1. Prior
mi - Data Models
GHENT

UNIVERSITY (Hermans, 2017, GW)
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USING PUSH-PULL ? 1 OR MULTIPLE CYCLES ?
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TRACING EXPERIMENT : 1-DAY VS 5-DAY

1-day experiment = we stop the experiment without recovering all the tracer
5-day experiment = we continue the experiment until initial conditions are met
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CONCLUSIONS

Bayesian Evidential Learning

— No inversion only forward modeling + learning
— Much faster (no iterative steps) -2 full paralellization
— Large uncertainty Is integrated at the beginning of the process

Applications

— Uncertainty of prediction
— Experimental design

Usefulness of single-well experiment
— Appropriate as long as the prediction Is sensitive to the same parameters
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Abstract

Recent developments in uncertanty quantification show that a full mversion of model parameters 1s not always necessary to
forecast the range of uncertainty of a specific prediction in Earth sciences. Instead, Bayesian evidential learning (BEL) uses a set
of prior models to derive a direct relationship between data and prediction. This recent technique has been mostly demonstrated
for synthetic cases. This paper demonstrates the ability of BEL to predict the posterior distribution of temperature in an alluvial
aquifer during a cyclhic heat tracer push-pull test. The data set corresponds to another push-pull experirment with different
characteristics (amplitude, duration, number of cycles). This experiment constitutes the first demonstration of BEL on real data
in a hydrogeological context. It should open the range of future applications of the framework for both scientists and practitioners.

Keywords Bayesian evidential learning - Push-pull tests - Tracertests - Heterogeneity - Uncertainty



CONCLUSIONS

Bayesian Evidential Learning

— No inversion only forward modeling + learning
— Much faster (no iterative steps) -2 full paralellization
— Large uncertainty Is integrated at the beginning of the process

Applications

— Uncertainty of prediction
— Experimental design

Usefulness of single-well experiment
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PRIOR REDUCTION

correlation = 0.93
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SAMPLING
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