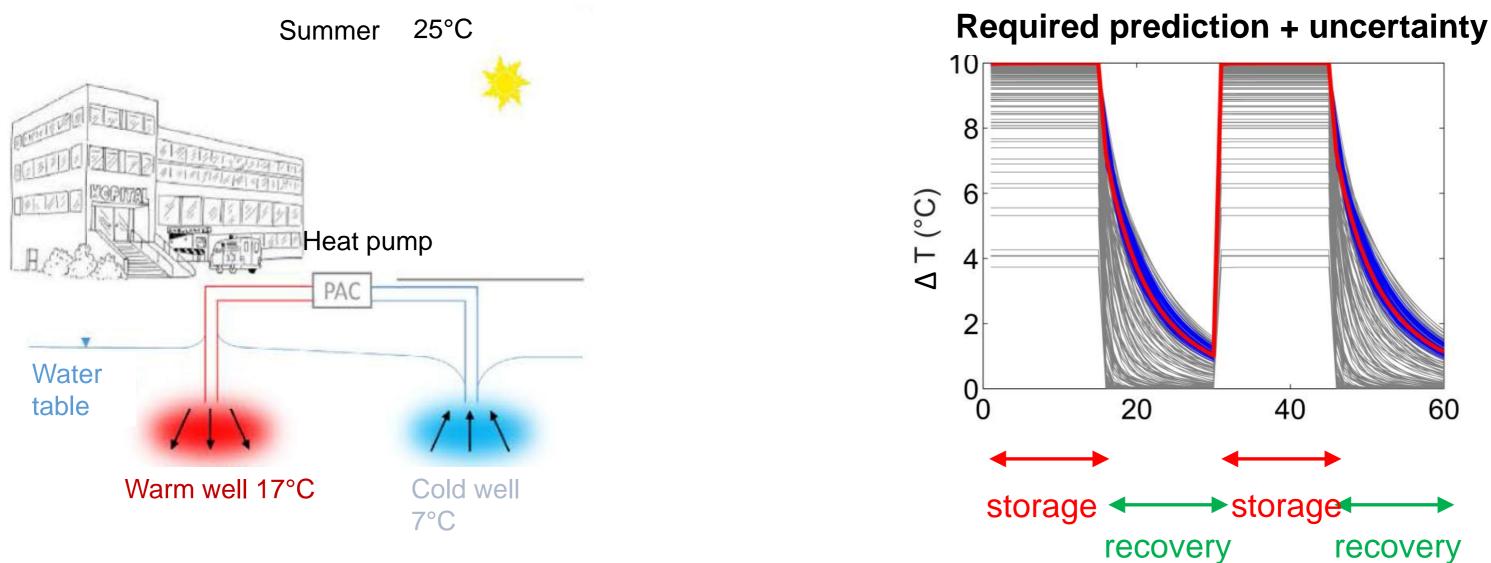


HOW INFORMATIVE ARE SINGLE WELL **TRACING EXPERIMENTS? AN ASSESSMENT USING BAYESIAN EVIDENTIAL LEARNING** <u>T. Hermans¹</u>, G. De Schepper², N. Lesparre³, T. Robert⁴

CASE STUDY INSPIRED BY ATES DESIGN



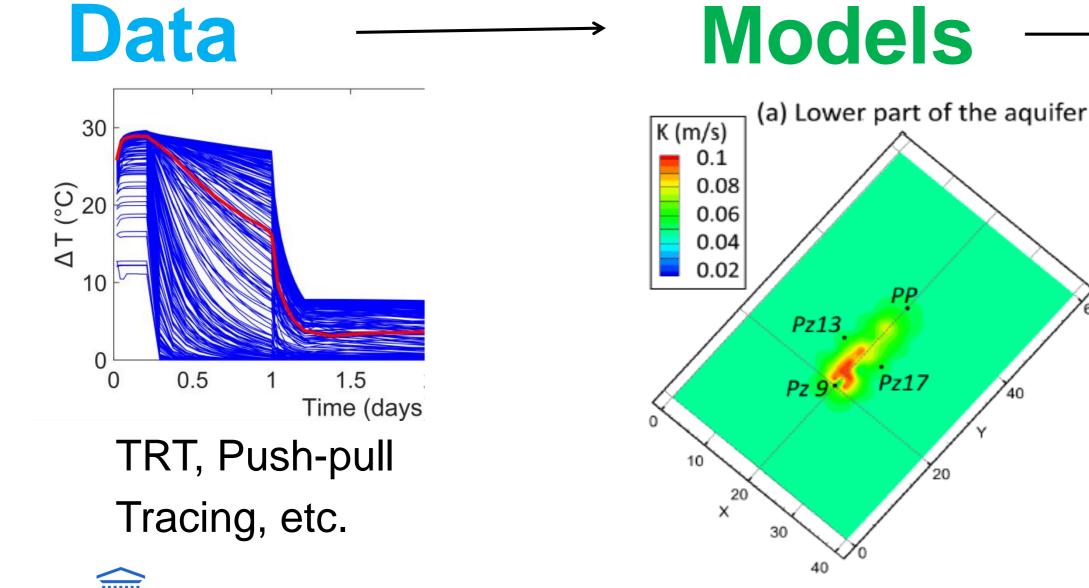
12°C

Budget limitations

- \rightarrow only wells for the ATES are drilled
- \rightarrow Only single-well experiments are possible

HOW DO WE GET THIS PREDICTION

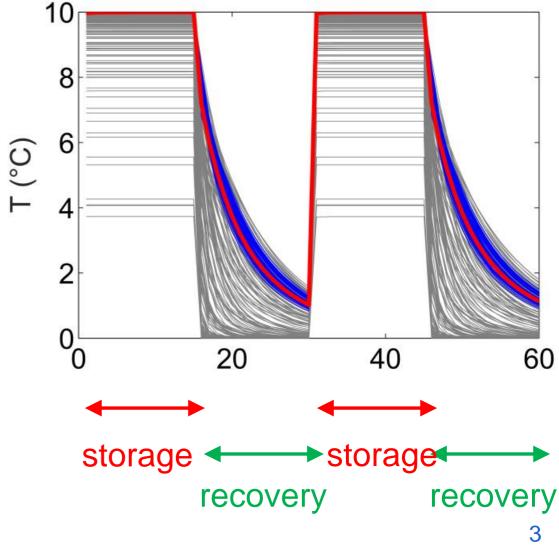
"Standard Method"



(Klepikova et al., 2016, JoH)

Prediction

Posterior distribution

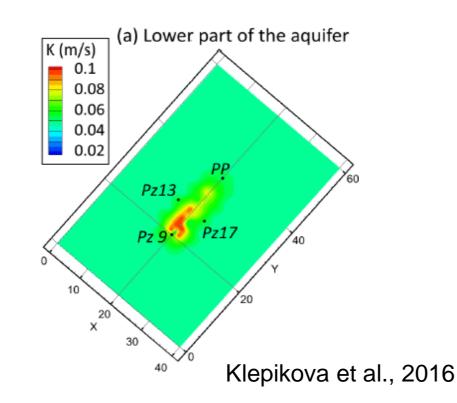


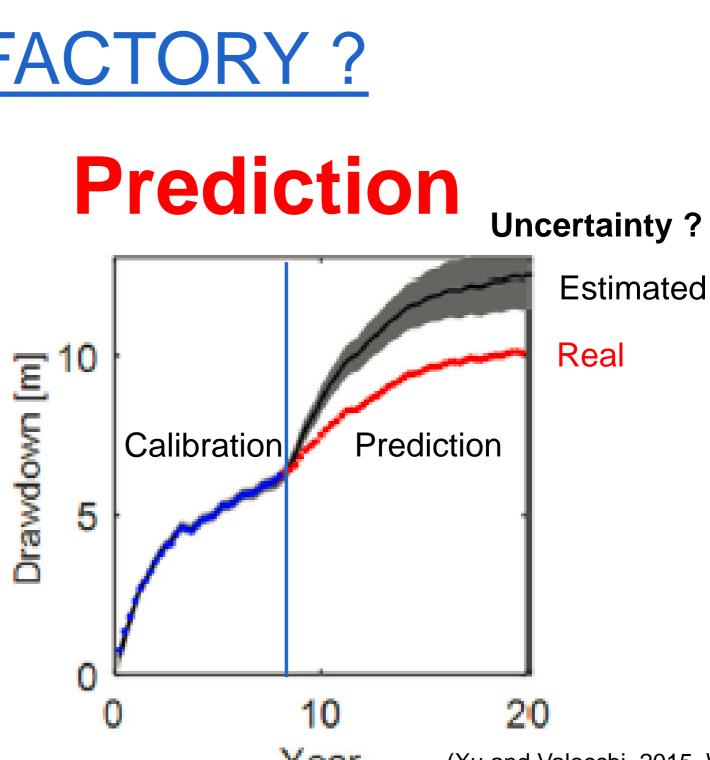
IS THIS APPROACH SATISFACTORY ?

Models

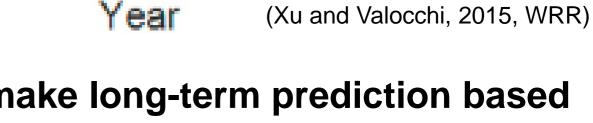
Parameterization : zonation, layered model, simplification to reduce the number of unknowns, etc. Choice of the boundary conditions, type of parameters (flow, heat transport, etc.)

Deriving models with just single-well data ?





Can we make long-term prediction based on single-well experiments only ?



BREAKING THE LINE

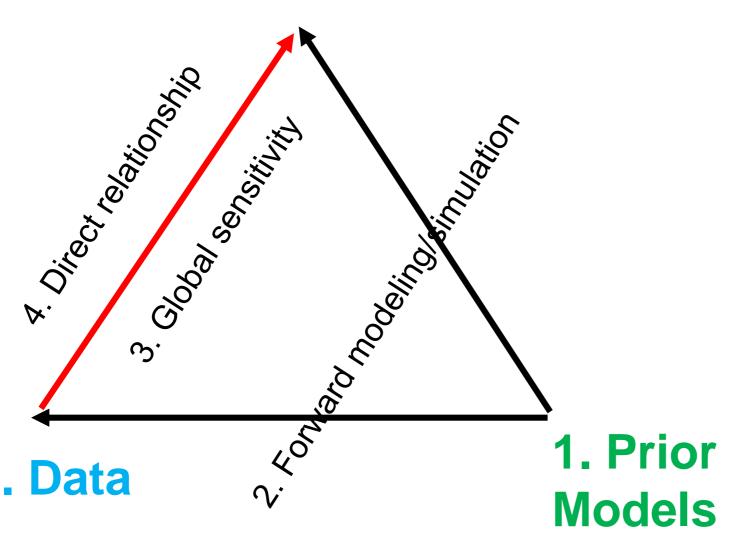
Bayesian Evidential Learning

New paradigm

5. Predictions

GHEN

UNIVFRSITY



- knowledge
- 2. We simulate our data sets and our prediction
- 3. We assess the sensitivity of both: is

- 4. We seek a direct relationship between
 - data and prediction
- 5. We estimate the real prediction
 - based on field data

(Hermans, 2017, GW)

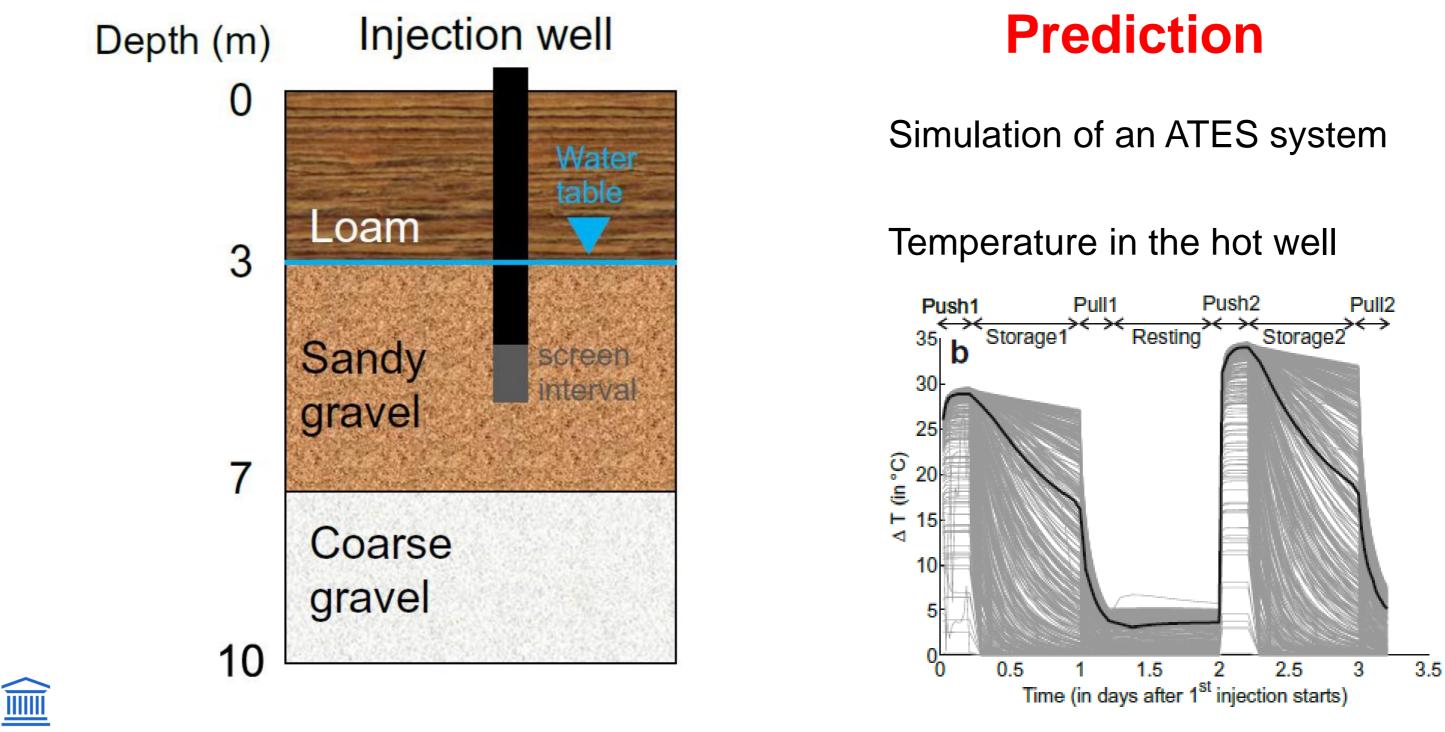
1. We generate realistic models (not calibrated) based on our geological

the data informative ?

HEAT STORAGE IN A SHALLOW AQUIFER

GHENT

UNIVERSITY

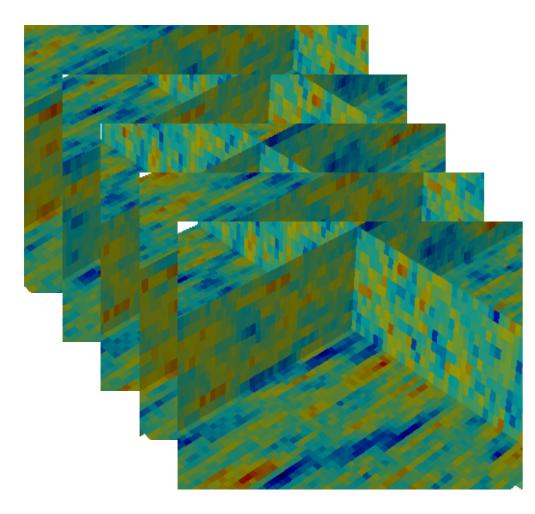


(Hermans et al., 2019, Hydrog. J.)

GENERATING MODELS

Models

What do we know, what do we ignore ?



Parameters	
Parameters	

Mean of log₁₀ K (m/s

Variance log₁₀ K (m/s

Range (m)

Anisotropy ratio

Orientation

Porosity

Gradient (%)

Other parameters

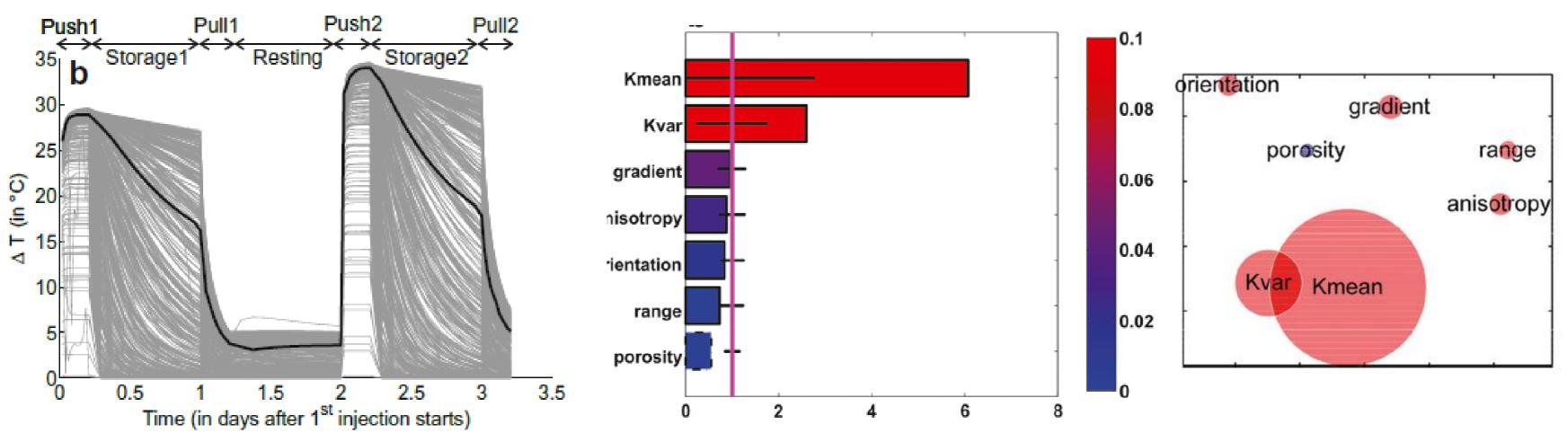
500 realizations = **prior models**

	Status	Value
(s)	Variable	U[-4 -1]
/s)	Variable	U[0.05 2]
	Variable	U[1 10]
	Variable	U[0.1 0.5]
	Variable	U[0 π]
	Variable	U[0.05 0.30]
	Variable	U[0.083 0.167]
	Fixed	

SENSITIVITY ANALYSIS OF THE PREDICTION

Prediction

GHENT

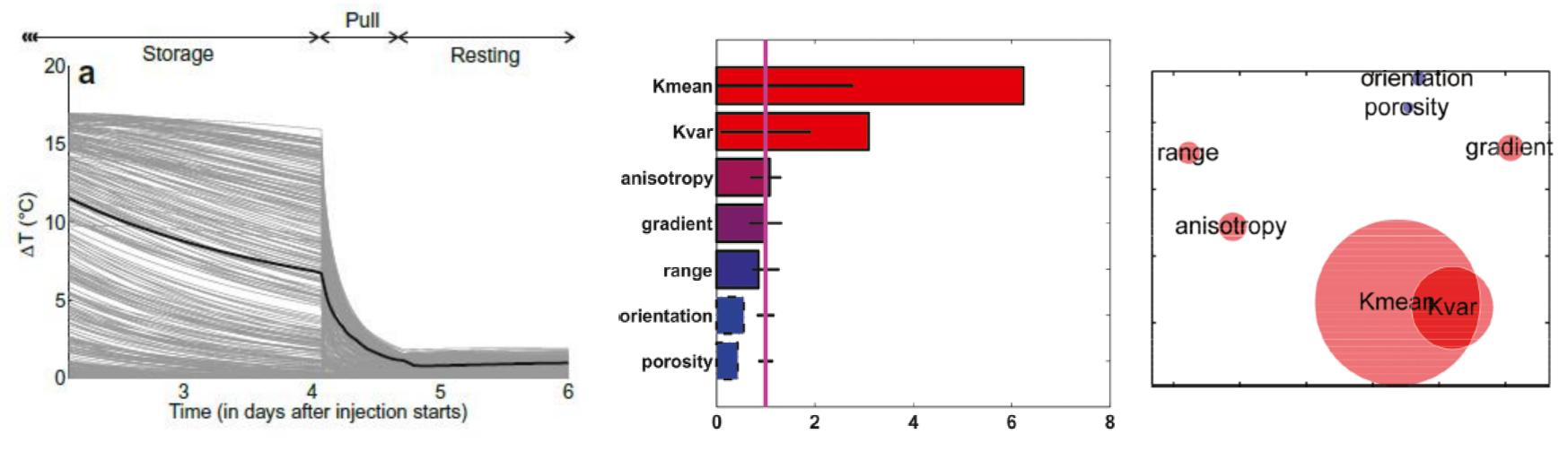


Identification of the most sensitive parameters and their interaction **UNIVERSITY**

Distance-based global sensitivity analysis (DGSA, Park et al., 2016, C&G)

IDENTIFICATION OF INFORMATIVE DATA SET(S)

Designing an informative experiment Data Push-Pull test ?



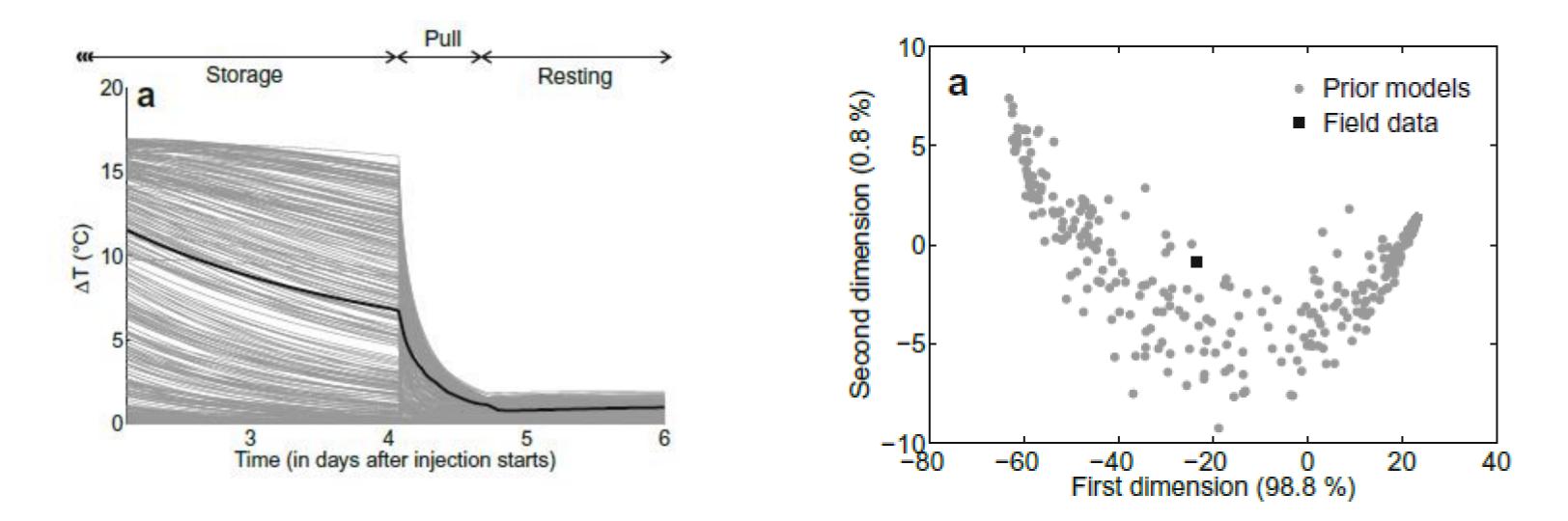
GHENT UNIVERSITY

Data sensitive to the same parameters as the prediction !

Standard Push-Pull test Injection 3m³/h +25°C for 6h Storage for 91h Pumping 3m³/h for 15.5 h Temperature at the well

ARE OUR PRIOR MODELS CONSISTENT ?

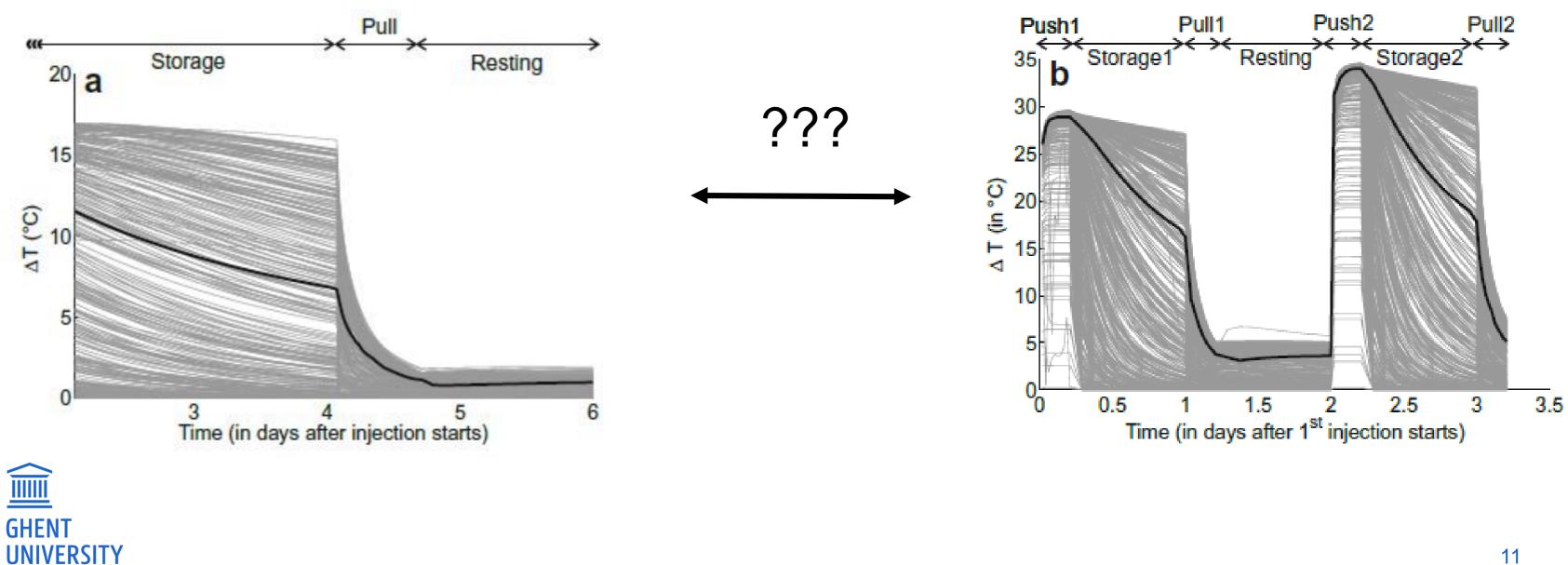
Consistency with field data



LEARNING STEP

Finding a direct relationship between data and prediction

Data

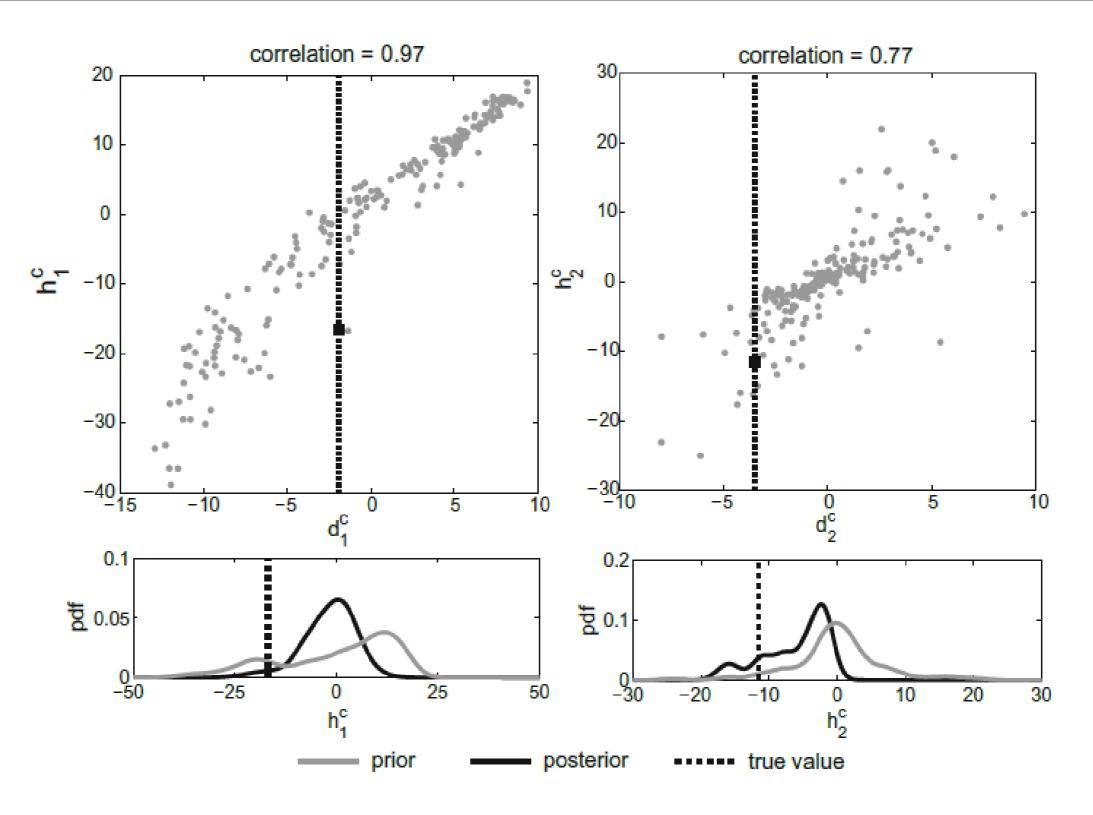


Prediction

LEARNING STEP

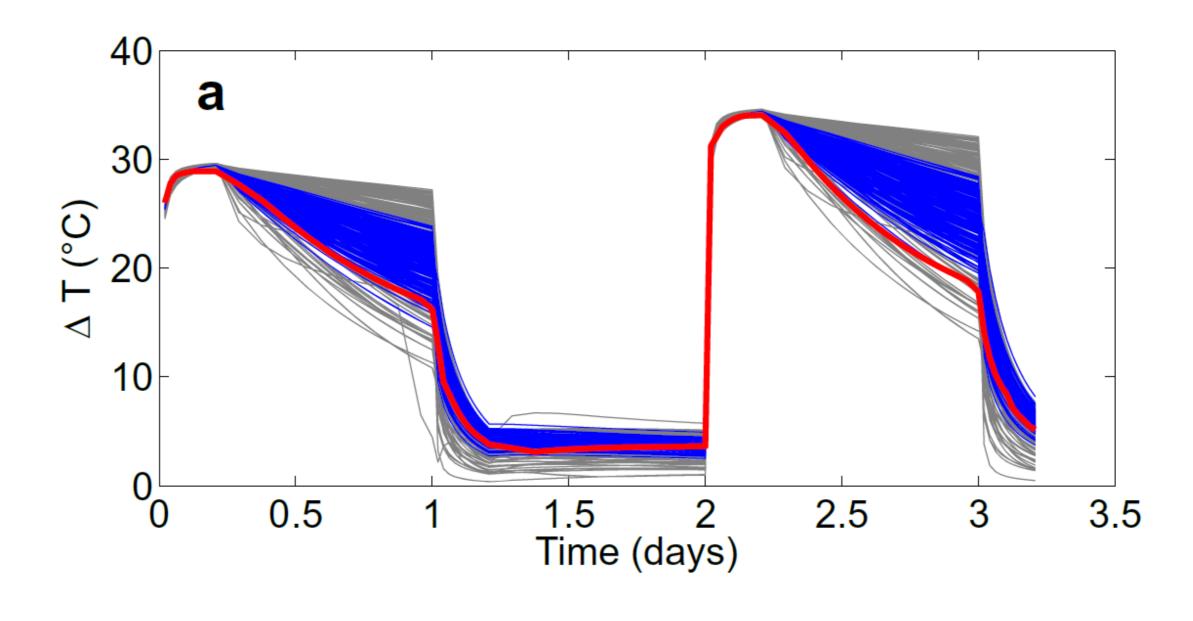
Finding a direct relationship between data and prediction

- 1. Dimension reduction (PCA)
- 2. Linearization (CCA)
- 3. Kernel density estimation



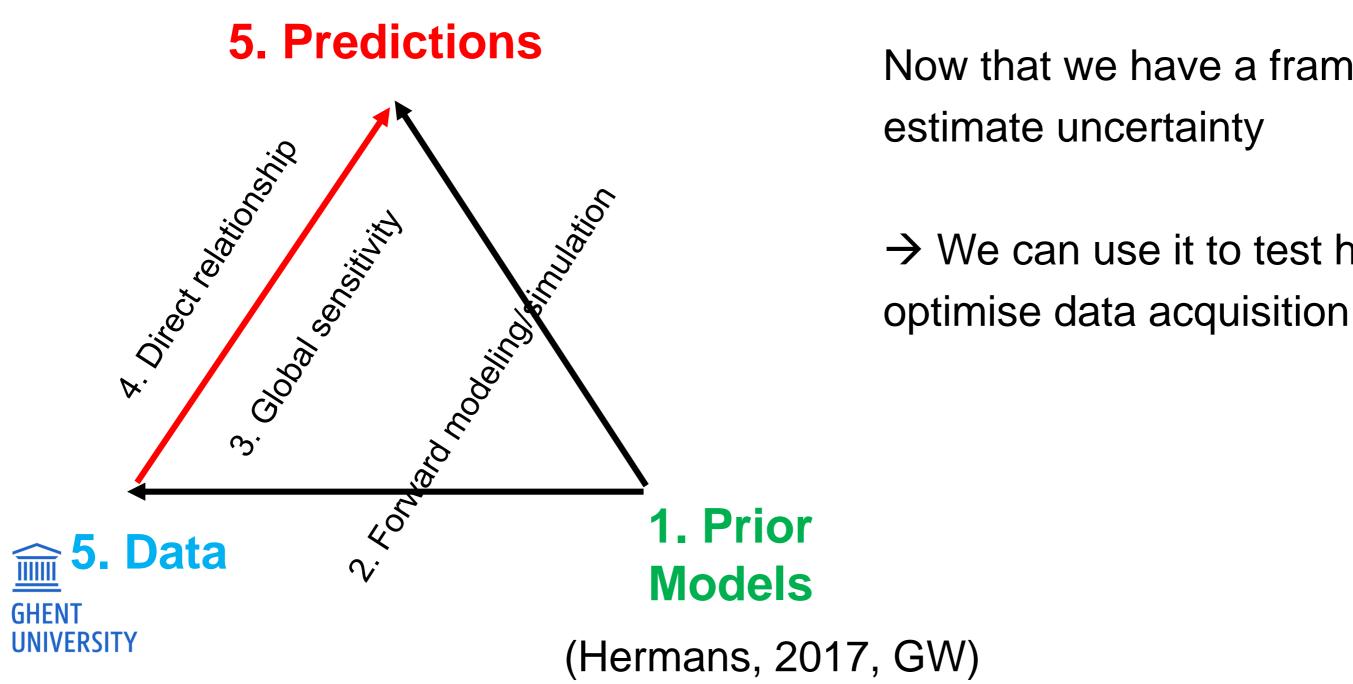
ESTIMATING THE PREDICTION + UNCERTAINTY

- 1) Sampling the posterior in reduced dimension space
- 2) Back-transform the samples in the original space



EXPERIMENTAL DESIGN

Bayesian Evidential Learning

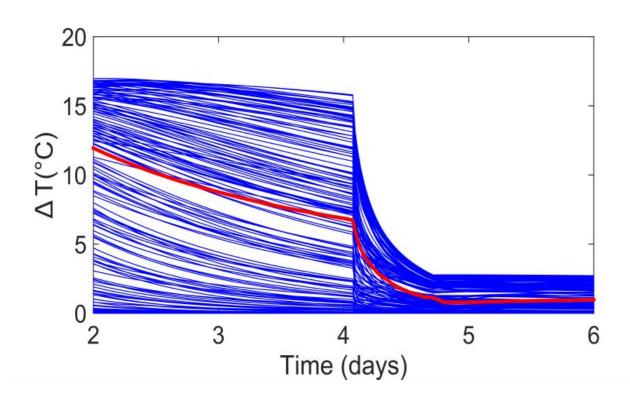


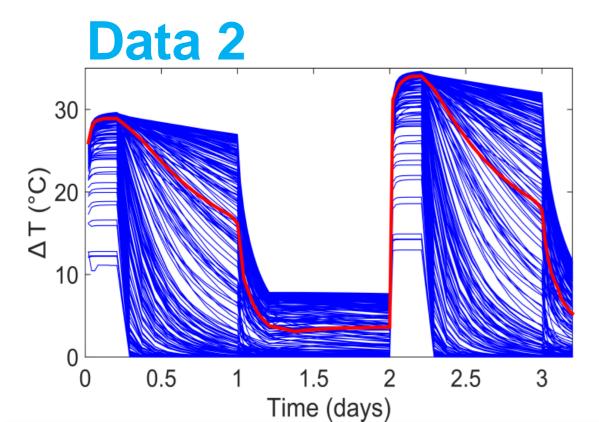
- Now that we have a framework to quickly
- \rightarrow We can use it to test hypothesis and

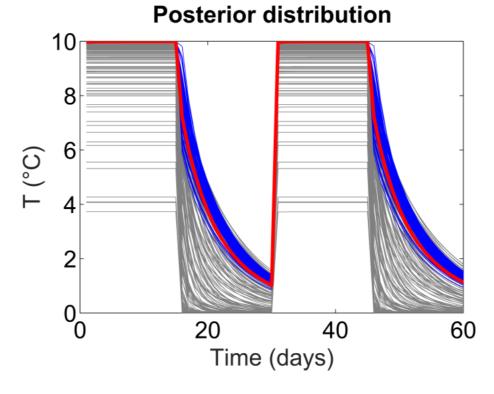
USING PUSH-PULL? 1 OR MULTIPLE CYCLES?

Data 1

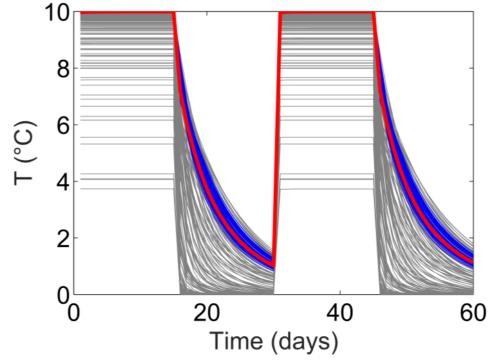
Test 1



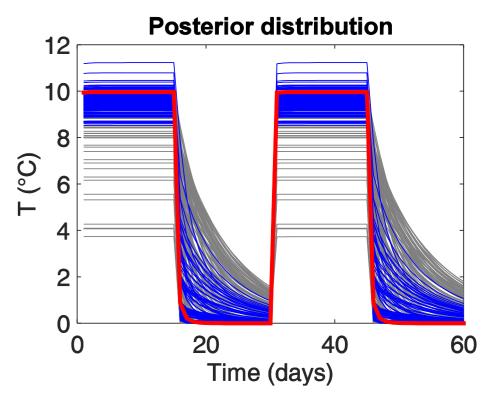


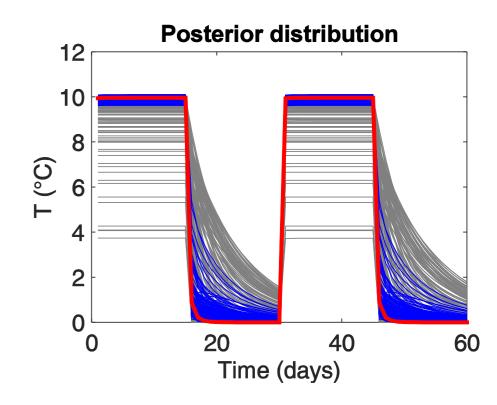


Posterior distribution



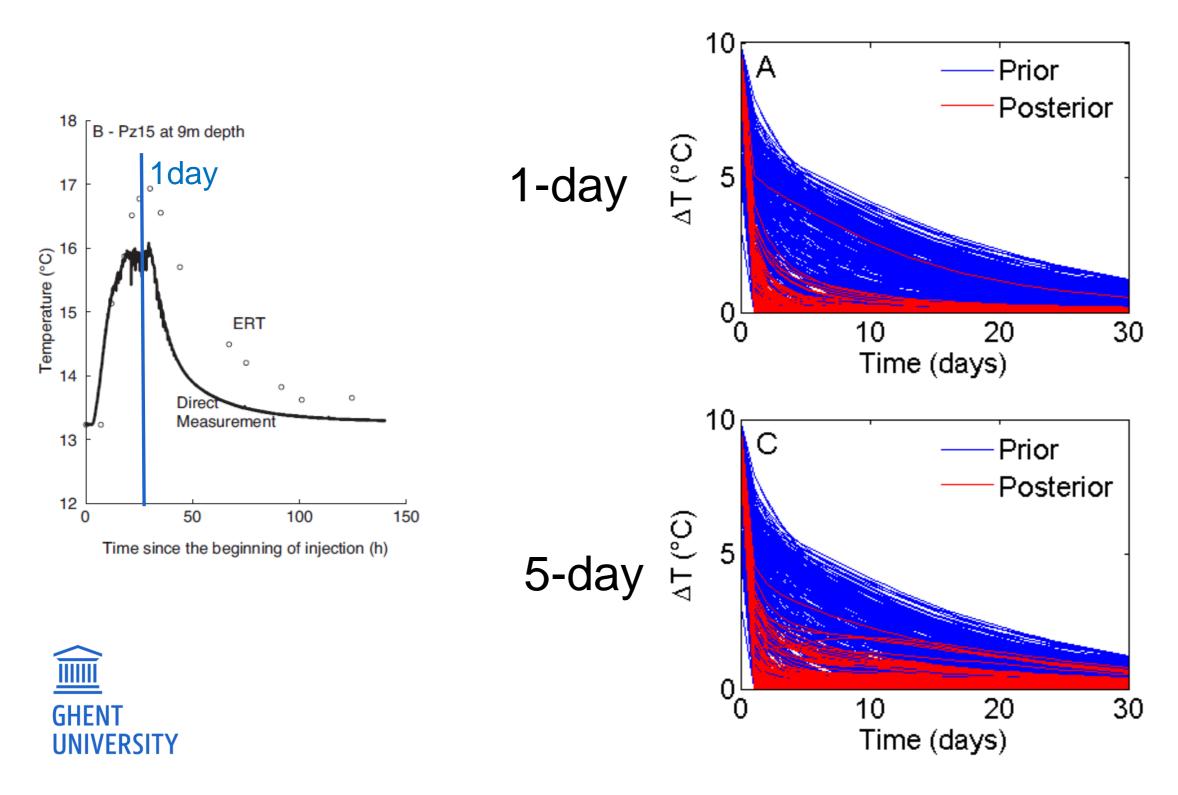
Test 2





TRACING EXPERIMENT : 1-DAY VS 5-DAY

1-day experiment = we stop the experiment without recovering all the tracer 5-day experiment = we continue the experiment until initial conditions are met



Same results, similar uncertainty

Is the 1-day experiment « sufficient »?

CONCLUSIONS

Bayesian Evidential Learning

- No inversion only forward modeling + learning
- Much faster (no iterative steps) \rightarrow full paralellization
- Large uncertainty is integrated at the beginning of the process

Applications

- Uncertainty of prediction
- Experimental design

Usefulness of single-well experiment

Appropriate as long as the prediction is sensitive to the same parameters

Hydrogeology Journal (2019) 27:1661–1672 https://doi.org/10.1007/s10040-019-01962-9

PAPER

Bayesian evidential learning: a field validation using push-pull tests

Thomas Hermans¹ • Nolwenn Lesparre^{2,3} • Guillaume De Schepper⁴ • Tanguy Robert^{3,4,5}

Received: 11 September 2018 / Accepted: 8 March 2019 / Published online: 22 March 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

Recent developments in uncertainty quantification show that a full inversion of model parameters is not always necessary to forecast the range of uncertainty of a specific prediction in Earth sciences. Instead, Bayesian evidential learning (BEL) uses a set of prior models to derive a direct relationship between data and prediction. This recent technique has been mostly demonstrated for synthetic cases. This paper demonstrates the ability of BEL to predict the posterior distribution of temperature in an alluvial aquifer during a cyclic heat tracer push-pull test. The data set corresponds to another push-pull experiment with different characteristics (amplitude, duration, number of cycles). This experiment constitutes the first demonstration of BEL on real data in a hydrogeological context. It should open the range of future applications of the framework for both scientists and practitioners.

Keywords Bayesian evidential learning · Push-pull tests · Tracer tests · Heterogeneity · Uncertainty

CONCLUSIONS

Bayesian Evidential Learning

- No inversion only forward modeling + learning
- Much faster (no iterative steps) \rightarrow full paralellization
- Large uncertainty is integrated at the beginning of the process

Applications

- Uncertainty of prediction
- Experimental design

Usefulness of single-well experiment

Appropriate as long as the prediction is sensitive to the same parameters

Hermans Thomas Assistant Professor

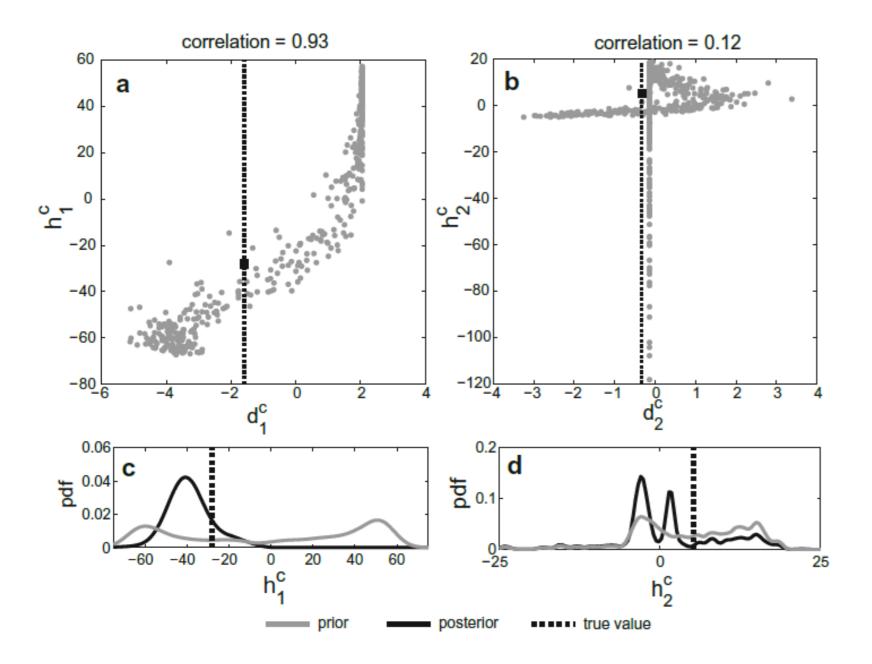
DEPARTMENT OF GEOLOGY

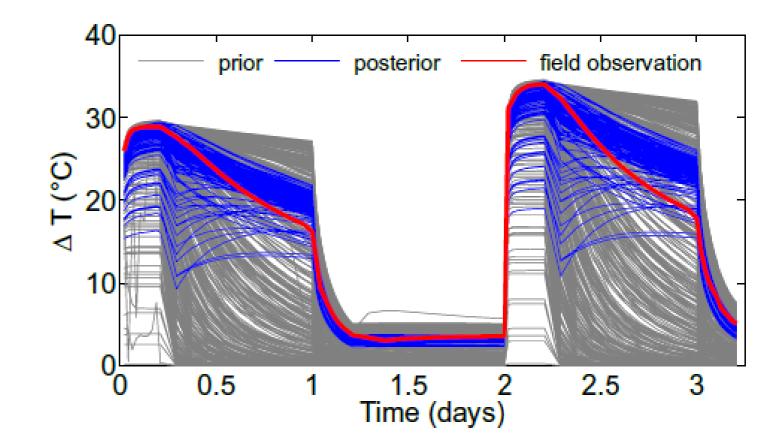
- Е thomas.hermans@ugent.be
- Т +32 9 264 46 60
- Μ +32 499 13 88 53

www.ugent.be

- **Ghent University** f @ugent У
- **Ghent University** in

PRIOR REDUCTION





SAMPLING

