On the propagation of reaction fronts in aquifers – the Bourtanger Moor sites revisited after 20 years

Georg Houben Jens Gröger-Trampe, Paul Königer, Vincent Post

georg.houben@bgr.de

GQ19 S07 Presentation 28

Problems (1): intensive farming

Cattle density per hectare

Nitrogen surplus

Agricultural areas (sandy soils, deep ploughed) high nitrate concentrations in groundwater (up to 125 mg/l) high potassium concentrations in gw (up to 12 mg/l)

Problems (2): legacy of acidification (?)

Forested areas ("acid rain")

- sandy soil
 - pH as low as pH 2.5
 - cation exchangers loaded with aluminum
- groundwater:
 - pH as low as pH 3.6
 - aluminum up to 1.2 mg/l

But: improvement expected (flue gas desulfurization installed during 1990s)

Now and then - main questions

How fast do the reaction fronts move?

PhD project RWTH Aachen: 1996-2000

- core drillings (agriculture, forest, peat bog): analysis of reactive components
- column experiments
- multi-level wells: hydrochemistry, stable isotopes, tritium, CFC dating
- 1D reactive transport modeling (PHREEQC) → front velocity prediction

What has happened during the last 20 years? Let's do it all a again!

How accurate were the model predictions? Did I really deserve my PhD degree?

Development of rain water chemistry

Acidification of forest soils

1 mmol(eq)/100 g ≈ 540 mg/l Al

Forest site: acidification of groundwater

Agricultural site: denitrification front 1998

(all observation wells)

Autotrophic denitrification via framboidal pyrite

Bundesanstalt für Geowissenschaften und Rohstoffe

Houben et al. (2001, 2017)

Depth of denitrification front: cores

1998: 11.40 m

2018: 11.26 m

Reaction front 2018 14 cm higher than 1998?

- flat terrain! no topography effect (4 m distance)
- natural variation?
- drilling artefact: core loss, compaction!

Marker horizont (charcoal) shows little vertical denitrification front propagation (1-2 cm)

- \rightarrow front velocity ca. 0.5-1.0 mm/a
- \rightarrow as predicted by models (Houben et al. 2001, 2017)
- \rightarrow reason: relatively high pyrite content

Agricultural site: gw trace elements 1998 vs. 2017

Nitrogen excess as denitrification indicator N₂ - argon method

Hidden denitrification: not just an artefact

How much "hidden nitrate"?

N₂/Ar data: ca. 5-20 mg/l N₂ excess \rightarrow 25-100 mg/l nitrate

Sulphate conc. multi-level wells: ca. 50-150 mg/l sulphate \rightarrow 45-135 mg/l nitrate

How does the "ghost nitrate" get into lower aquifer?

Clay pinches out towards west but: reducing conditions (bog) \rightarrow low nitrate, low recharge

"Holes" in aquitard? Close to pumping wells: water level difference between aquifers: up to 2 m

Abandoned leaky boreholes? No holes? Just flow through aquitard?

MODFLOW model on its way ...

Conclusions (official)

- Reproducibility 1998 vs. 2017/18 surprisingly good ☺
 - despite different sampling & analysis techniques, different labs & people
- Forest site, acidification:
 - rain: pH and sulphuric acid input have improved markedly ☺
 - soil: pH and cation exchange composition show no improvement ⊗
 - groundwater: pH and aluminum mobilisation deteriorated ⊗
- Agricultural site: denitrification front propagation
 - very slow vertical propagation in upper aquifer, as predicted by models \odot
 - But: hidden denitrification in lower aquifer (flow through holes in aquitard?) ●*
- So, did I deserve my PhD? You decide ...

Conclusions (inofficial) - 20 years later Still haunted by the ghost of nitrate

"Antigonish" (based on a ghost story) by William Hughes Mearns (1899)

Anti-nitrogen (ode to nitrate) by myself (2019)

"Yesterday, upon the stair,

I met a man who wasn't there!

He wasn't there again today,

Oh how I wish he'd go away!"

"20 years ago, in my aquifer, I analyzed a contaminant that wasn't there! It wasn't there again today,

Oh how I wish this nitrate would go away!"

Thank you for your attention!

Applied Geochemistry 76 (2017) 99-111

	Contents lists available at ScienceDirect	Applied Goochemistry
	Applied Geochemistry	
ELSEVIER	journal homepage: www.elsevier.com/locate/apgeochem	

Terrestrial sedimentary pyrites as a potential source of trace metal release to groundwater – A case study from the Emsland, Germany

Georg J. Houben^{*}, Maria A. Sitnikova, Vincent E.A. Post

Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, D-30655 Hannover, Germany

Cases and Solutions

Assessing the reactive transport of inorganic pollutants in groundwater of the Bourtanger Moor area (NW Germany)

G. J. Houben(🖾) · A. Martiny · N. Bäßler · H.-R. Langguth · W. L. Plüger

More is on its way ...

How old is the groundwater?

Stable isotopes

