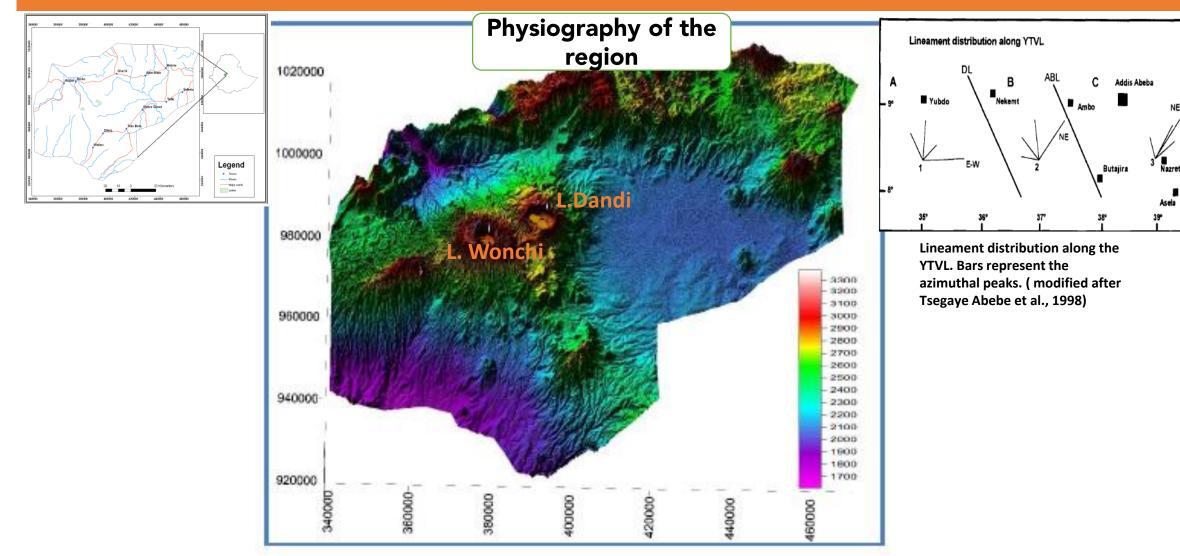
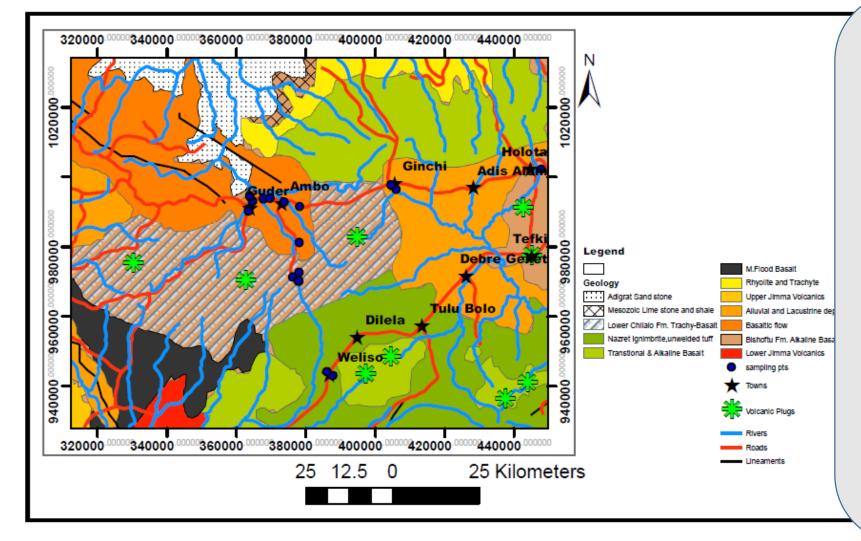
CO₂- water-rock interaction: Implication for Natural CO₂ Analogue In the Wonchi System; Ethiopia.

Hassen Shube^{1,2}, Seifu Kebede², Kristine Walraevens³


¹Adama Science and Technology University, Applied Geology Department, Ethiopia ²Addis Ababa University, School of Earth Schiences, Addis Ababa, Ethiopia ³Ghent University, Laboratory of Hydrogeology, Geology Department, Ghent, Belgium

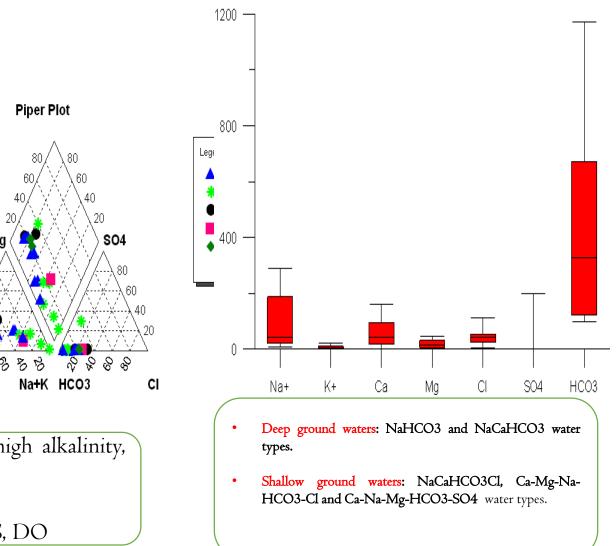

Introduction

- CO₂ can be emitted to the atmosphere by degassing of magma and metamorphic decarbonation.
- Through volcanoes, associated fissures and hydrothermal sites, geothermal systems.
- CO₂ Water form by mixing of mantle-derived, magmatic or metamorphic CO₂ and high T geothermal fluids with ground or surface waters.
- Wonchi system is one of the natural analogues with Natural sparkling waters which diffuses CO2 to the atmosphere
- Thermal-gaseous springs are associated to this structures.
- CO2-Water-rock interaction is investigated in the Wonchi System of mineralized thermal and gaseous groundwater.

Introduction

Geology and Hydrogeology

- Adigrat Sandstone in Ambo and Senkele area with medium productivity.
- Rhyolite and trachyte between Ambo, Wonchi and Dandi volcanic centers and Wolisso with low productivity.
- Tarmaber scoraceous Basalt exposed across Ambo fault and Wolisso area.
- Tertiary ignimbrite(low productivity) overlien by Becho plain quaternary basalt and alluvial deposits with moderate to high productivity.
- Geological structures along the Ambo-Wonchi-Wolisso and AA-Ambo fault systems.

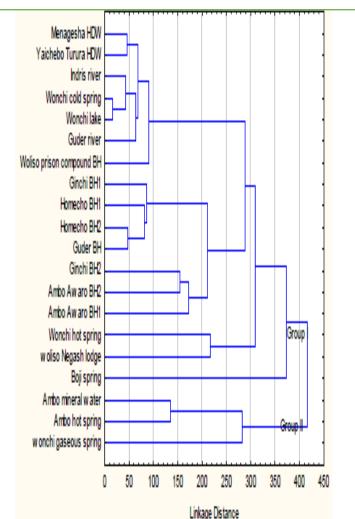

Methods and Results

- Water samples were collected and analyzed for $\delta^2 H$ and $\delta^{18} O$, geochemical data, $\delta^{13} C$ isotope and trace element.
- HCA analysis
- Inverse geochemical modeling (Phreeqc)
- ¹³C analysis to identify the CO₂ Source.

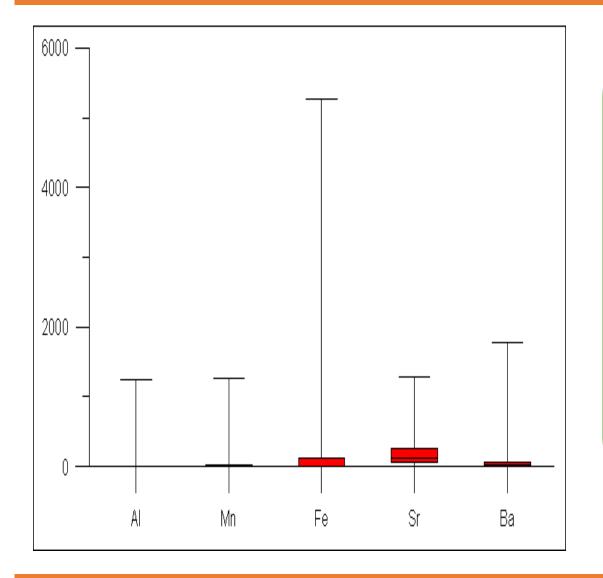
- Deep groundwaters: thermal and gaseous: low pH (CO2), high alkalinity, TDS, EC and DO.
- Shallow groundwaters: cold, fresh: high pH, low alkalinity, TDS, DO

September 9-12, 2019, GQ,2019, Liege, Belgium

Ca

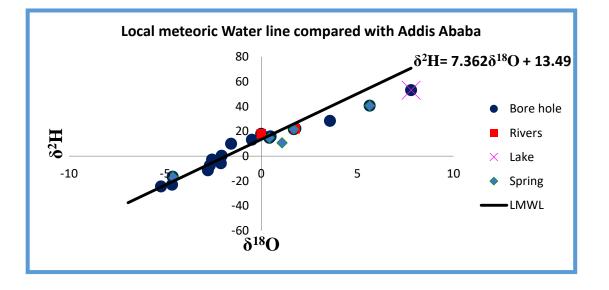


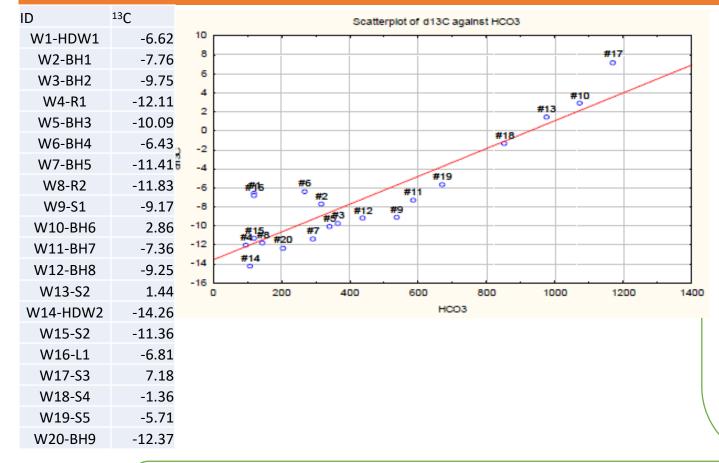
Results and Discussion


HCA classified the waters in to two major groups and six sub groups

- Group 1: low TDS<850mg/l: shallow ground waters, rivers hand dug wells and lakes situated around Wonchi, Guder, Ambo and Woliso area.
 - Cold, shallow and fresh ground waters: CaHCO3, CaMgHCO3 water types except in some mixed ground waters. They undergo short residence time and shallow subsurface circulation.
- Group II: high TDS >850mg/I: thermal and gaseous springs which represent the deep ground water circulation.
 - Ground waters around Ambo area: NaCaHCO3 type; high TDS, alkalinity and low pH; representing the highly evolved, deep ground waters.
 - Ground waters around Wonchi and Woliso: NaHCO3 water type, high TDS and long subsurface circulation.

Hierarchical cluster analysis


Trace element mobility


- Low pH thermal and gaseous ground waters: higher trace element mobility
- Origin of heavy metals: geogenic source like the weathering of silicate rocks, ferromagnesian minerals and weathering of calcite.
- **Sr, Ba, Fe, Mn and Al:** sometimes above WHO standard due to oxidation of sulphides
- Li, Cu, Ni and B: relatively higher but less than WHO standard.

Results and Discussion

- The δ^{18} O and δ^{2} H: thermal and gaseous ground waters show depletion: recharge at higher altitude
- Thermal and gaseous ground waters **around Wonchi crater lake** show **enrichment in** δ^{18} **O due to** hydraulic connection of the lake water to ground waters.
- cold and shallow ground waters and surface waters: enrichment in $\delta^{18}O$ and δ^{2H} isotopes due to local evaporation effect.
- Thermal and gaseous ground waters around Ambo: **negative oxygen shift** due to the effect of CO2 gas

Results and Discussion

- The δ^{13} C isotope: high TDS gaseous ground waters Ambo mineral water, Ambo hot spring and Wonchi gaseous spring: CO2 from metamorphic decarbonation source.
- Woliso Negash lodge and Wonchi thermal spring: CO2 is from magmatic source i.e. mantle origin.
- shallow ground water bore holes, hand
 dug wells, lake water and river waters:
 CO2 to this ground water is from soil
 and C3 plants.

- The δ^{13} C of the ground waters
 - Shallow aquifers: depleted = -14.26 to -6.43‰ and
 - Deep thermal and gaseous : enriched =-5.71 to 7.18‰.

Inverse geochemical modeling

Models

Model A

Model B

Model C

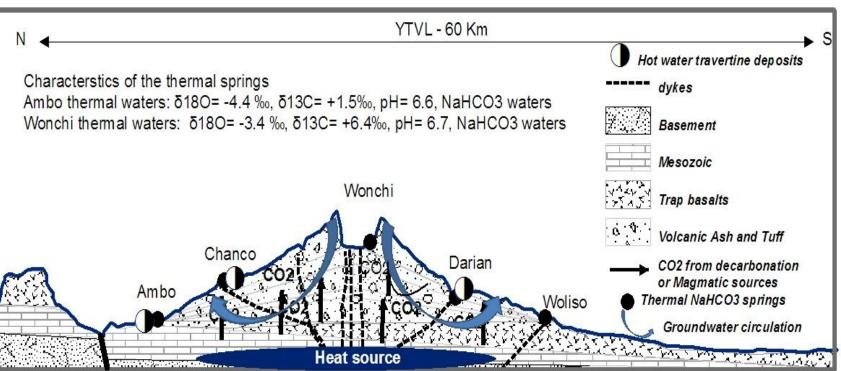
Model D

- The initial and final waters of the aquifer system
- PHREEQC computer code: simulate the geochemical evolution among HCA identified waters.
- Four models are conducted on selected ground water flow path
- The major phases of dissolution in most of the model results are CO2(g), halite, K-mica, pyroxene, K-feldspars, plagioclase, albite, fluorite and dolomite.
- Calcite and clay minerals like illite are among the major phases of precipitation.

	ſ	Mode		
	Disease			
	Phase	mole transfers -4.444e-003	: CaC03	Dhaaa
		7.775e-003		Phase Halit
	Halite Illite K-feldspar plagioclase	3.028e-004 -1.255e-002 4.336e-004	- NaCl K0.6Mg0.25Al2.3Si3.5Ol0(OH)2 KAlSi3O8 Na0.62Ca0.38Al1.38Si2.62O8	Illit CO2(g K-fel Calci Plagi K-mic
		7.096e-003		Ругох
	Phase	mole transfer		Phase
Water types	02(g)	-1.116e-002 3.523e-002	CaCO3 CO2	Calcite
NaCaHCO3	alite	2.161e-003	NaCl	CO2(g) Dolomit
NaCaHCO3	llite :-feldspar		K0.6Mg0.25Al2.3Si3.5Ol0(OH)2 3 KAlSi308	Halite
CaMgHCO3Cl			02 Na0.62Ca0.38All.38Si2.62 Mg0.5Ca0.5Si03	111ite K-mica
NaCaHCO3		1.607e-002	-	Fluorit K-felds
NaHCO3	-			Plagioc
NaCaHCO3CI				
NaHCO3				

	Model C	
lase	mole transfer	rs:
alite	3.770e-004	NaCl
llite	-4.165e-002	K0.6Mg0.25Al2.3Si3.5Ol0(OH)2
02 (g)	6.909e-002	C02
feldspar	1.953e-003	KA1Si308
alcite	-1.764e-002	CaCO3
lagioclas	e 1.792e-002	Na0.62Ca0.38A11.38Si2.6208
-mica	2.304e-002	KA13S13O10(OH)2
roxene	2.386e-002	Mg0.5Ca0.5SiO3

IVIOO	erD
more cransre	
-1.317e-002	CaCO3
1.215e-002	C02
6.897e-003	CaMg(CO3)2
7.576e-004	NaCl
2.624e-002	K0.6Mg0.25A12.3S13.5O10(OH)2
1.065e-002	KA13S13O10(OH)2
1.196e-004	CaF2
5.412e-003	KA1Si308
1.667e-002	Na0.62Ca0.38A11.38Si2.620
	1.215e-002 6.897e-003 7.576e-004 2.624e-002 1.065e-002 1.196e-004 5.412e-003



CO2-water-rock interaction

- Deep groundwaters
 - Thermal and gaseous groundwaters: open to the influx of CO2 gas from external source: from Mantle source and Metamorphic decarbonation
 - Hydration of CO2 gas to form H₂CO3 and then dissociated to HCO3 and silicate hydrolysis reaction is activated.
 - Gaseous and thermal ground waters are depleted in δ¹⁸O and enriched in δ¹³C isotopes, except in Wonchi gaseous and thermal springs.
 - CO2 is the major phase of dissolution and Silicate minerals such as pyroxene, plagioclase, K-feldspars, K-mica, fluorite are the common minerals of dissolution reaction. Whereas, calcite and some clay minerals are the result of precipitation reactions.
- Shallow and cold ground waters are closed to CO2 influx from external source and undergo slight CO2-water-rock interaction and short sub-surface circulation.

CO₂-water-rock Interaction

Conclusion

- Thermal and gaseous ground waters along the Ambo-Woliso-Butajira fault: Highly evolved with significant CO2-water-rock interaction; source of CO2 is from metamorphic decarbonation and magmatic source
- shallow and cold ground waters: slight CO2-water-rock interaction and short subsurface circulation; the CO2 source in shallow ground waters is from soil and C3 plants.
- Trace element mobility is higher in low pH thermal and gaseous ground waters and origin of these trace metals is geogenic
- Geochemical reactions like strong silicate hydrolysis by CO2(g).
 - The major phases of dissolution: CO2(g), pyroxene, K-mica, K-feldspars, albite and dolomite.
 - The major phases of precipitation: calcite and clay mineral like illite.

Thank You

