

Field and numerical experiments of an urban aquifer thermal energy storage system

Groundwater Quality 2019 Liège, September 9 – 12, 2019

Guillaume De Schepper¹, Pierre-Yves Bolly¹, Ludovico Ivan Sanasi¹, Tanguy Robert^{2,3}

¹ AQUALE sprl, Belgium
² University of Liège, Belgium
³ F.R.S.-FNRS, Belgium

Contact: g.deschepper@aquale.com

Introduction

- energy independence.

- Main goals:
 - -

Building of a new Knowledge and Resource Centre in Liège, targeting

First open-loop well-doublet ATES system in Wallonia.

Injection and recovery in the Meuse alluvial aquifer.

Create a predictive 3D hydrogeological model.

Check the ATES system technical feasibility and intial implementation, based on building thermal needs.

What is ATES?

3

Bloemendal & Hartog, 2018 (Geothermics 71)

Location

Field work

- Head and Temperature monitoring (O1 to O5).
- Pumping tests (21 to 63 m³/h) in W1 & W2.
- Na-naphtionate tracer test: 50 L (20 g/L) injection at O1, monitoring at W2.
- Heat tracer test: background T = 14 °C, 28 m³ injected at T = 48 °C (Δ T = 34 K).
- 4D time-lipse Electrical resistivity tomography (ERT) monitoring of the heat tracer test. But didn't succeed.

Field work

14.70

Numerical model

- Modeling code: FEFLOW[®].
- Groundwater flow / mass & heat transport.
- Transient simulations, fully saturated conditions.
- Groundwater flow: automatic calibration against hydraulic head, with pilot points (PEST; Doherty, 2015, 2016).
- Mass/heat transport: manual calibration against breakthrough curve at W2.

Predictive simulation

- Groundwater flow / heat transport.
- 10-year simulation, based on building energy needs estimated data.
- Injection and recovery, up to 24 m³/h.
- Max. authorized operational $\Delta T = 5 \text{ K}$
- COP = 4.5 / EER = 7.0

	Heating season	Cooling
Duration [d]	105	26
Max. Q [m³/h]	7.2	25
Stored volume [m ³]	5 100	50 (

 $[\]Delta = 44 \ 900 \ m^3$

- Short-circuit during the cooling season.
- Meuse temperature: no impact on ATES system operational temperature.
- Thermal plume intercepted at O3 and O4 after a couple of cycles.

Temperature distribution in the aquifer

ATES cycle no. 1

End of cooling season End of heating season 4 Absolute temperature [°C]

10

<u>100 m</u>

ATES cycle no. 5

Hydraulic head [m]

60.02	
60.01	
60.00	

ATES cycle no. 10

Conclusion

Highly productive aquifer suitable for ATES application but the imbalance between stored warm and cold water has to be monitored in the future.

Is the thermal plume an issue?

- Heat island effect linked to the thermal insulation of the building.
 - \rightarrow Cooling efficiency likely affected by the T° rise.
 - \rightarrow Increase inter-well distance to avoid short-circuiting.
- Simulation performed with ATES running in continuous mode.
 - \rightarrow Office building, working days.
- Overdesign: 100% efficient system simulated.
- Pooling/sharing the excess stored heat for old buildings in the district.

Is the model reliable?

- Calibrated model, but data scarcity.

Uncertainty analysis needed.

Thank you for your attention

AQUALE sprl **Rue Ernest Montellier, 22 5380 Noville-les-Bois (Belgium)**

> () +32 81 83 01 20
> L +32 81 83 56 63 @infos@aquale.com www.aquale.com

What about Belgium?

Fleuchaus et al., 2018 (Renew. Sustain. Energy Rev. 94)

Simulated hydraulic head

- Meuse water level: seasonnaly dependent, controlled flow through locks located upstream.
- Major influence on groundwater head in the aquifer.

2017

Groundwater flow calibration

- Calibration under steady state conditions:
 - No active pumping well.
 - Low residuals calculated. —
 - But, very low local hydraulic gradient. —
- Validation under transient conditions:
 - 50 m³/h at W2. —
 - Drawdown at piezometers: ok. —

	Observed head (m)	Simulated head (m)	Residual (m)
O1	59.21	59.21	0.00
O2	59.21	59.22	0.01
O3	59.19	59.18	-0.01
O4	59.18	59.16	-0.02
O5	59.24	59.23	-0.01
59.25 -			
		• 05 (obs.)	• O2 (obs.) • V
59.20			02 (0111.)
59.15 -			· · · · · · · · · · · · · · · · · · ·
59.10 -			
59.05 -	•		
59.00 -	0 00 00 		
58.95 -	•		1000 ⁰ 0 ⁰ 0 0 0 0 00 00 0 0 0 0 0 0 0 0
58.90 -			
58.85 -			
58.80 -			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
58.75 -		, , , , , , , , , , , , , , , , , , , ,	
0.0 0	0.5 1.0 1.5 2.0 2.5 3	3.0 3.5 4.0 4.5 5.0 5. Time [h]	5 6.0 6.5 7.0

