USING STEADY-STATE TRANSPORT MODELS TO SIMULATE GROUNDWATER AGE AND AGE TRACER BREAKTHROUGH

Olivier Atteia and Henning Prommer

Background

- Climate change -> long term simulation
- Simulating solute and reactive transport to assess groundwater quality evolution relies on robust groundwater flow models
- Flow models that employ only hydraulic heads for model calibration suffer from non-uniqueness
- Environmental tracer data, i.e., groundwater age tracers can potentially reduce non-uniqueness and predictive uncertainty arising from « head-only » calibrations

Flow and transport in large basins

- Flow simulations may take several hours
- Transport simulations may take several days

Temporal evolution of ¹⁸O

Objective and approach

- Objectives
 - Develop an efficient method to simulate long term transport of noble gases or stable isotopes
 - To include this modelling in optimization process
- Approach
 - Use Mt3dms steady state solute transport simulation capability
 - Simulate several decaying substances
 - Invert it to get local age distribution

Age and mixing

• « Age » obtained from ¹⁴C does not mix linearly

Age distribution and decay

Now, it is recognize that at each point, there is a distribution of the age of water

GÉORESSOURCES & ENVIRONNEMEN

t

Age distribution and decay

Local age distribution shall lead to different concentrations of decaying substances

Close to non-uniqueness

Due to integral and exponential, different distributions can lead to very close C_i

How age distributions occur

Age distributions result from mixing

Using neighbors to solve non-uniqueness

A 2D example

400 x 80 cells

Resulting distributions

φ

Tracer breakthrough by convolution

GÉORESSOURCES & ENVIRONNEMENT

16

Tracer breakthrough by convolution

Calculation time

	2D fine	3D medium	3D fine
Nb of cells	64 000	50 000	1 250 000
Run time (min)			
Modflow transient	0.5	1.5	12
Modflow steady	0.1	0.3	1
Mt3dms transient	45	62	1100
Mt3dms steady	0.04	0.04	1.3
Curve fitting (10 pts)	0.02	0.02	0.02

E S E N T

Conclusions

- Steady state Mt3dms simulations can be used to retrieve age distributions
- Convolution of distribution provides local tracer transient curve
- Overall calculation < 1 min
- Can be used as a quite precise surrogate model for optimization
- Extension to kinetic reactions in dissolved phase possible
- Will soon be available as a plugin in Orti3d

