

Obtaining Site-Derived Parameters Supporting DFM Transport Modeling In Fractured Sedimentary Rock

10th International Groundwater Quality Conference 9-12 September 2019, Liege, Belgium

Kenley Bairos MASc Research Associate, G360 Group, University of Guelph

Collaborators: Dr. Beth Parker, Dr. Patryk Quinn, Pete Pehme.

TRANSPORT MODELING IN CONTAMINANT HYDROGEOLOGY EPM vs DFM

Equivalent Porous Media (EPM)

- Averaged fracture matrix properties
- neglects controlling processes
- inadequate for transport in fractured rock

Discrete Fractured Matrix (DFM)

- most rigorous approach
- field ground truthing (profile comparisons)
- computationally demanding
- Difficult to parameterize with standard methods
- A DFM Field Approach provides inputs

Outline of Talk

Applying our DFM approach for model parameterization

- **1)** Parameterizing the static fracture network
 - Methods for Identifying mechanical units

- 2) Identifying the "active" fracture network
 - New methods for Identifying and representing active fractures in model – *Critical Reynolds Number (Re_c) Approach*

- 3) Model Runs
 - Example Results of 2D / 3D Flow & Transport simulations using DFM paramaterization

Development of DFM model

Applying a DFM approach for model parameterization

1) Parameterizing the static fracture network

• Methods for Identifying mechanical units

Types of Joint Systems

Stratabound joint system

Joints are largely confined to individual beds, their size is limited to a narrow range and spacing is regular

Non-Stratabound joint system

Joints cover a wider range, fractures cross cut bedding and spacing tends to be clustered

Joint network at sedimentary rock research sites exhibit the characteristics of a stratabound system

Joints are:

 confined to individual beds separated by fine grained unit or bedding plane features

What are Mechanical Units?

- Groups of layers displaying regularly spaced joints
- All (most) joints start and end at the boundaries of the unit itself.
- Most commonly identified using outcrops but can also be obtained using borehole data.

Challenge - Establishing Mechanical Unit Distribution in Subsurface

- Outcrops most often cannot offer information regarding mech units in subsurface
- Must rely on borehole data to identify mechanical units distribution with depth
- Horizontal continuity exhibited by mechanical units means borehole data useful despite small sample size.

Identifying Mechanical Units using OTV/ATV Logs

- Mechanical Units can be identified using borehole imaging tools.
- Like outcrop analysis, potential mechanical unit interfaces are identified by low K units or bedding plane features.
- Offers location/depth specific Mechanical Unit distribution

IDENTIFYING MECHANICAL UNITS USING OTV/ATV LOGS

Cumulative Fracture Intensity Plot and Potential Mechanical Boundaries (Borehole Image Derived)

Final Mechanical Stratigraphy Defined Using Borehole Image Analysis and CFI Plot

Mechanical Units Used to Define Fracture Generation Grid

Example of Outcrop

FRACTURE FREQUENCY OF EACH MECHANICAL UNIT CALCULATED

FRACTURE FREQUENCY OF EACH MECHANICAL UNIT ASSIGNED TO RESPECTIVE LAYER IN MODEL GRID

STATIC FRACTURE MODEL INFORMED BY OTV FRACTURE DATA

73,430 Simulated Fractures Domain = 160 x 160 x 180m

Development of DFM model Applying a DFM approach for model parameterization

1) Methods for Identifying / modeling mechanical stratigraphy

2) New Methods for Identifying and representing active fractures in model – Critical Reynolds Number (Re_c) Approach

3) Results: Run 2D / 3D Flow & Transport simulation using the active fracture system.

NUMBER OF ACTIVE FRACTURES CONTROLS PLUME MIGRATION DISTANCES

Dense Network

Source 50 years

Sparse Network

Same bulk K but very different contaminant distribution

BOREHOLE FRACTURE IDENTIFICATION METHODS

STATIC

- Good for observing distribution of fractures in boreholes
- Provide limited information regarding which fractures have active flow

Visual Interpretation of fractures combined with evidence of flow to identify "active" fractures

ALS - HIGH RESOLUTION TEMPERATURE LOGGING TECHNIQUE FOR IDENTIFYING FLOWING FEATURES IN LINED BOREHOLE

Pehme, P. E., et al. (2013). Journal of Hydrology

NEW CRITICAL REYNOLDS NUMBER (RE_C) ANALYSIS FOR ESTIMATING DISTRIBUTION OF PERMEABLE FRACTURES IN BOREHOLES

- Quantifying the distribution of permeable fractures using <u>fluid mechanical behaviour</u> – Onset of non-Darcian flow : Critical Reynolds Number (Re_c)
- Requires Constant Head Step Tests in short isolated packer intervals
- Uses visual physical fractures (Core, OTV, ATV) to constrain analysis.

ELSEVIER	Contents lists avai	lable at ScienceOirect minant Hydrology alsevier.com/locate/iconhyd
Using constar	nt head step tests to det	ermine hydraulic apertures in
Patryk M. Quinn	*, Beth L. Parker ¹ , John A. Che	rry
School of Engineering, Univer-	sity of Guelph, 50 Stone Road East, Guelph, Ontario,	Ganada NI G2WI
ARTICLE INI	O ABSTRACT	
Accepted 6 July 2011 Available online 27 July 201 Reywork: Constant head step test Cable law Darrian flow Factured nock Groundwater velocity Hydranic apentare Non-Darcian flow Packer test Reynolds number Transmissivity	granutation granutation granutation constraints gas accurate testing of counts instance packets in the instance packets in the sets interval waves gas inspiration rates, the file Darcian flow, non Da significantly lower: Thus the packets in the This study proposes confidence in the sele	(v) in relative location of the entropy of the ent
Introduction In wellhead protect varying land use restrict well producing wate are prescribed based well aroducing wate are prescribed based well aroducing wate intense, expense and it method is rarely used common approach is groundwater velocity * Comergonaling author. T * Comergonaling author.	ion regulations, it is common to apply tions to areas within specified radii of for human consumption. These radii time of rave (1974, 1984), Although ot accurate method to obtain travel me are generally to large that this except in karstic formations. A more to use estimates of verage linear (7) obtained from the Darty flux (q) stc. + 1319.824.412bc6674. Methods (JPA Globel, Sec.	calculated from Darcy's Law, where Ψ is q divided by the effective porosity (ϕ) for flow, for granular aquifers com- prised of sand and gravel, ϕ is typically between 0.23 and 0.4 and therefore Ψ exceeds the Darcy flux by a factor of approximately 3 and the actual measurement of ϕ is done consting to scatadral methods with mainteal uncertainty. The standard method with mainteal uncertainty flow is primarily in the fractures, the challenge for obtaining effective ϕ values is much gravet, For fractured rock the general range for the bulk medium fracture protonal ϕ (ϕ) is nevered the Darcy flux by orders of magnitude. Whereas it is generally fusible to reliably estimate the effective porosity (ϕ) is generally fossible to reliably estimate the effective porosity for and and gravet aquifers based of determining the ϕ -values.
¹ TeL: +1 519 824 4120x		

Quinn et. al. 2011 Journal of Contaminant Hydrology

ACTIVE VS STATIC FRACTURE DISTRIBUTION

- ALS/Re_c analysis produced a 58% reduction from OTV fractures
- General pattern of fracture intensity (mechanical units) remains unchanged

FIELD INFORMED ACTIVE FRACTURE NETWORK REPRESENTED IN 3D MODEL (FRACMAN)

Core/ATV/OTV Informed "Static" Fracture Network

Re_c / ALS Informed "Active" Fracture Network

FIELD INFORMED "ACTIVE" FRACTURE NETWORK REPRESENTED IN 2D DFM TRANSPORT MODEL (FRACTRAN)

2D DFN TRANSPORT MODEL FOR INDUSTRIAL SITE IN CAMBRIDGE, ONTARIO, CANADA

Concentrations of MET Detected in rock core.

GROUND TRUTHING DFM MODEL

SIMULATED CONTAMINANT DISTRIBUTION VS ROCK PORE WATER CONCENTRATIONS

Field informed DFM model reproduces the vertical distribution of contamination observed in rock core.

PUBLISHED IN JOURNAL OF THE GEOLOGICAL SOCIETY OF LONDON

Metolachlor dense non-aqueous phase liquid source conditions and plume attenuation in a dolostone water supply aquifer

BETH L. PARKER¹*, KENLEY BAIROS¹, CARLOS H. MALDANER¹, STEVEN W. CHAPMAN¹, CHRISTOPHER M. TURNER^{2,3}, LEANNE S. BURNS^{2,4}, JAMES PLETT^{2,5}, RAYMOND CARTER⁶ & JOHN A. CHERRY¹

¹G360 Institute for Groundwater Research, College of Engineering & Physical Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada

²University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada

³Present address: The Johnson Company, 795 Elm Street, Suite 203, Manchester, NH 03101, USA

⁴Present address: Golder Associates Ltd, 6925 Century Avenue, Suite 100, Mississauga, Ontario, L5N 7K2, Canada

⁵Present address: Haley & Aldrich, 1956 Webster Street, Suite 300, Oakland, CA 64612, USA

⁶Dillon Consulting Limited, 1558 Wilson Place, Winnipeg, Manitoba, R3T 0Y4, Canada Parker et. al. 2018

Presents site conceptual model using high resolution DFM data sets and numerical modeling to show site source and plume evolution

- DFM Models are excellent tools for simulating transport in fractured rock, exploring uncertainty and testing conceptual models
- Require rigours DFM focused field approach to properly parameterize the fracture network
- Important to represent mechanical unit distribution and active fracture network for accurate representation of plume

Thank You

Acknowledgments

Beth Parker Patryk Quinn (G³⁶⁰) Pete Pehme (G³⁶⁰) Boeing NSERC Syngenta

kbairos@g360group.org www.g360group.org

