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TRANSPORT MODELING IN CONTAMINANT HYDROGEOLOGY
EPM vs DFM

Time = 100 years lg

Equivalent Porous Media (EPM) s
» Averaged fracture matrix properties i f;*

* neglects controlling processes
 inadequate for transport in fractured rock .

Discrete Fractured Matrix (DFM) o “"'°°V”"" l

* most rigorous approach

 field ground truthing (profile comparisons)

« computationally demanding

 Difficult to parameterize with standard methods | PR
A DFM Field Approach provides inputs 5 : . S !




Outline of Talk

Applying our DFM approach for model parameterization

1) Parameterizing the static fracture network
* Methods for Identifying mechanical units

2) Identifying the “active” fracture network
* New methods for Identifying and
representing active fractures in model —
Critical Reynolds Number (Re_) Approach

3) Model Runs
Example Results of 2D / 3D Flow & Transport
simulations using DFM paramaterization @




Development of DFM model
Applying a DFM approach for model parameterization

1) Parameterizing the static fracture network
* Methods for Identifying mechanical units




Types of Joint Systems

Stratabound joint system

Joints are largely confined to individual
beds, their size is limited to a narrow range
and spacing is regular

Non-Stratabound joint system

Joints cover a wider range, fractures cross
cut bedding and spacing tends to be
clustered

(Odling et. al, 1999)



Joint network at sedimentary rock research sites exhibit
the characteristics of a stratabound system

Joints are:

 confined to individual beds
separated by fine grained unit or
bedding plane features




’ What are Mechanical Units?

« Groups of layers displaying regularly
spaced joints

 All (most) joints start and end at the
boundaries of the unit itself.

« Most commonly identified using
outcrops but can also be obtained
using borehole data.




Challenge - Establishing Mechanical Unit
Distribution in Subsurface

« Qutcrops most often cannot offer
Information regarding mech units in
subsurface

« Must rely on borehole data to identify
mechanical units distribution with
depth

« Horizontal continuity exhibited by
mechanical units means borehole
data useful despite small sample size.
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RD-107 — OTV Log
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<€ Low-K Unit

<€ Mechanical Unit

Mechanical
Interface

Mechanical Units can be identified
using borehole imaging tools.

Like outcrop analysis, potential
mechanical unit interfaces are
identified by low K units or bedding
plane features.

Offers location/depth specific
Mechanical Unit distribution




IDENTIFYING MECHANICAL UNITS USING OTV/ATV LoGs /£
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termination at bedding plane
partings located at lithology
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Fractures
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Cumulative Fracture Intensity Plot and Potential Mechanical
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Final Mechanical Stratigraphy Defined Using
Borehole Image Analysis and CFI Plot
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Mechanical Units Used to Define Fracture Generation Grid

Selected Mechanical Interfaces
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FRACTURE FREQUENCY OF EACH MECHANICAL
UNIT CALCULATED

C10- Cumulative Fracture Intensity and Mechanical Units
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FRACTURE FREQUENCY OF EACH MECHANICAL UNIT
ASSIGNED TO RESPECTIVE LAYER IN MODEL GRID

Fracture
Frequency
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STATIC FRACTURE MODEL INFORMED £
BY OTV FRACTURE DATA /£ /£

73,430 Simulated Fractures
Domain =160 x 160 x 180m




Development of DFM model
Applying a DFM approach for model parameterization

1) Methods for Identifying / modeling mechanical
stratigraphy

2) New Methods for Identifying and representing
active fractures in model — Critical Reynolds
Number (Re ) Approach

3) Results: Run 2D / 3D Flow & Transport simulation
using the active fracture system.




NUMBER OF ACTIVE FRACTURES CONTROLS PLUME
MIGRATION DISTANCES
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BOREHOLE FRACTURE IDENTIFICATION METHODS
STATIC

Core Logging Borehole Imaging
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Optical Acoustic
Televiewer Televiewer

* Good for observing distribution of fractures in boreholes
* Provide limited information regarding which fractures have active flow é




FRACTURE IDENTIFICATION METHODS
HYDRAULIC

Visual Interpretation of fractures combined with evidence of flow to identify “active” fractures

Borehole Core Packer Temperature Rec Informed
Imaging  Fractures Testing Profiles - ALS Fractures

OTV/ATV Transmissivity Cooling




ALS - HIGH RESOLUTION TEMPERATURE LOGGING TECHNIQUE
FOR IDENTIFYING FLOWING FEATURES IN LINED BOREHOLE
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prabe for identifying hydraulically active frac-
tures in rock has improved due to the combination of two advances: improved temperature sensors, with
resolution on the order of 0.001 °C, and temperature profiling within water inflated flexible impermeable
liners used to temporarily seal boreholes from hydraulic cross-connection. The open-hole cross-connec-
tion effects dissipate after inflation, so that both the groundwater flow regime and the temperature dis-
tribution return to the ambient (background) condition. This paper introduces a third advancement: the

assistance of Xunhong Chen, Associate use of an electrieal heating cable that quickly i the ofthe water column
Editor within the lined hole and thus places the entire borehole and its immediate vicinity into thermal disequi-

librium with the broader rock mass. After heating for 4-6 h, profiling is conducted several times over a
Keywords: 24 period as the temperature returns to background conditions. This procedure. referred to as the

Fractured rock
Temperature logging
Ambient flow
Homothermic boundary

Active Line Soutce (ALS) method, offers two key improvements over prior methods. First, there is no
depth limit for detection of fractures with flow. Second, both identification and qualitative comparison
of evidence for ambient groundwater flow in fractures is improved throughout the entire test interval.
‘The benefits of the ALS method are demonstrated by comparing results from two boreholes tested to
depths of 90 and 120 m in o dolostone aquifer wsed for municipal water supply and in which most

Pehme, P. E., et al. (2013).
Journal of Hydrology
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pwater Quality 2010

e Quantifying the distribution of permeable fractures
using fluid mechanical behaviour — Onset of non-
Darcian flow : Critical Reynolds Number (Re)

* Requires Constant Head Step Tests in short isolated
packer intervals

* Uses visual physical fractures (Core, OTV, ATV) to
constrain analysis.

NEW CRITICAL REYNOLDS NUMBER (REC) ANALYSIS FOR ESTIMATING
DISTRIBUTION OF PERMEABLE FRACTURES IN BOREHOLES

Vydrolgy 126 (2011 8598

Cantonts lists availabla at SciencaDireot

Journal of Contaminant Hydrology

Journal hamepage: www.alsevier.com/locatesjconhyd

Using constant head step tests to determine hydraulic apertures ir
fractured rock
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ACTIVE VS STATIC FRACTURE DISTRIBUTION

* ALS/Re_analysis produced a 58% reduction from OTV fractures
* General pattern of fracture intensity (mechanical units) remains unchanged

Cumulative Fracture Intensity Plot -10
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’ FIELD INFORMED ACTIVE FRACTURE NETWORK
REPRESENTED IN 3D MODEL (FRACMAN)

Core/ATV/OTV Informed Re_/ ALS Informed
“Static” Fracture Network “Active” Fracture Network

—)

58% Reduction
In Fractures




FIELD INFORMED “ACTIVE” FRACTURE NETWORK REPRESENTED IN
2D DFM TRANSPORT MODEL (FRACTRAN)
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2D DFN TRANSPORT MODEL FOR INDUSTRIAL SITE IN
CAMBRIDGE, ONTARIO, CANADA
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GROUND TRUTHING DFM MODEL
SIMULATED CONTAMINANT DISTRIBUTION VS ROCK PORE WATER CONCENTRATIONS
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Conclusions

« DFM Models are excellent tools for simulating transport in
fractured rock, exploring uncertainty and testing conceptual
models

« Require rigours DFM focused field approach to properly
parameterize the fracture network

« Important to represent mechanical unit distribution and active
fracture network for accurate representation of plume
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