

Groundwater Quality 2019

EXPERIMENTAL AND MODELLING INVESTIGATIONS OF ²²²RN PROFILES IN CHEMICALLY HETEROGENEOUS LNAPL CONTAMINATED VADOSE ZONES

<u>G. Cohen¹</u>, D. Su², P. Höhener³, U. Mayer², O. Atteia¹

¹: EA 4592 G&E, Bordeaux INP – U. Montaigne, France
²: DEOS, University of British Columbia, Canada
³: LCE - CNRS, Aix-Marseille Université, France

Liège 9/12/2019

GÉORESSOURCES & ENVIRONNEMENT

Context

- Groundwater and soil contamination : a widespread environmental problem
- Pollution often related to L and D-NAPL
- Source delineation is crucial to develop improved remediation design
- Usual techniques are costly and time consuming -> Soil gas survey
- Radon-222 (²²²Rn) : a possible indicator for NAPL localization and quantification

Rn properties

- Naturally emitted by soil matrix with radium-226 bearing minerals
- Chemically inert despite dissolution into NAPL (Nazaroff, 1992)
- Allows NAPL localization and quantification in
 - Saturated zone (Hunkeler et al., 1997; Davis et al., 2005)
 - Vadose zone (Schubert et al., 2001; Höhener et Surbeck, 2004)

Delineation of NAPL contaminated zone in homogeneous aquifers

Project objective

Define the ability of ²²²Rn gas method to identify LNAPL sources in chemically heterogeneous unsaturated media

- ²²²Rn production
- ²²²Rn dissolution in NAPL
- ²²²Rn decay in gas and NAPL phases
- Laboratory experiments
 - Batches
 - Columns

General equations

• Mass balance for a 1D representative volume in vadose zone:

$$\frac{\partial}{\partial t} \left(\theta_g A_g + \theta_w A_w + \theta_n A_n \right) = \frac{\partial^2}{\partial x^2} \left(D_g \theta_g A_g + D_w \theta_w A_w + D_n \theta_n A_n \right) + Q$$

- \circ g, w, n : gas, water, NAPL \circ A_i : ²²²Rn activity in phase i (Bq m⁻³),
- \circ θ_i : i phase content (-),

 \circ D_i, : effective diffusion coeff. in phase i (m² s⁻¹),

Diffusion in NAPL ignored

• Source (in-growth) and sink (decay) term Q (Bq m⁻³ s⁻¹):

$$Q = EC_{Ra}\lambda\rho_s(1-\theta_t) - \lambda(\theta_g A_g + \theta_w A_w + \theta_n A_n)$$

- \circ E : ²²²Rn emanation coefficient (-), \circ $\rho_{\rm s}$: solid density (kg m⁻³),
- C_{Ra} : solid Ra content (Bq kg⁻¹), λ : ²²²Rn decay rate constant (2.1×10⁻⁶ s⁻¹)
 - Assuming instantaneous linear equilibrium between phases:

$$K_H = \frac{A_g}{A_w} \qquad \qquad K_n = \frac{A_n}{A_g}$$

$$K_{n-w} = K_n \times K_H$$

MIN3P conceptual model and enhancement

MIN3P enhanced model validation

MIN3P enhanced model validation

 \checkmark

 $\mathbf{\nabla}$

 $\mathbf{\nabla}$

- ²²²Rn decay in the gas phase ☑
- ²²²Rn production
- ²²²Rn dissolution in NAPL
- ²²²Rn decay in NAPL

Experimental validation

- 2 soils selected :
 - MP1 : purified industrial sand
 - MP2 : sieved alluvial sand
- Batches
 - Soils ²²²Rn production
 - *K_n* determination (colza oil)
- Column experiments
 - Without NAPL
 - With NAPL

Batch experiments results

- ²²²Rn production :
 - MP1 : 0.10 ± 0.01 Bq kg⁻¹
 - MP2 : 0.92 ± 0.08 Bq kg⁻¹

ECRa relatively stable for environmental application in the relevant range of moisture contents

• Colza oil K_n determination : $K_n = 5.17$

$$-> K_{n-w} = 22.7$$

Good accordance with partitioning coefficients found in the literature for colza oil (Clever, 1979)

Column experiments results

Good agreement between experimental and numerical results

Column experiments results

Good agreement between experimental and numerical results

Influence of NAPL distribution on ²²²Rn activity profile

Influence of NAPL distribution on ²²²Rn profiles

Conclusions and perspectives

- Enhancement and validation of MIN3P model
- -> Ability to simulate ²²²Rn transport in heterogeneous vadose zone
- Possibility of LNAPL contamination delineation by ²²²Rn soils gas monitoring in chemically heterogeneous unsaturated media
- ²²²Rn activity profile mainly controlled by:
 - Porous media ²²²Rn production rate,
 - Vadose zone fluid saturations and
 - NAPL type and distribution in the contaminated regions
- Future studies need to be carried out to evaluate the potential of this modeling method on real industrial contaminated sites

Thank you for your attention

Science of the Total Environment 681 (2019) 456-466

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Laboratory-scale experimental and modelling investigations of ²²²Rn profiles in chemically heterogeneous LNAPL contaminated vadose zones

Grégory J.V. Cohen^{a,*}, Isabelle Bernachot^a, Danyang Su^c, Patrick Höhener^b, K. Ulrich Mayer^c, Olivier Atteia^a

^a EA 4592 G&E, Bordeaux INP - Université Bordeaux Montaigne - Carnot ISIFoR, 1 allée F. Daguin, 33607 Pessac, France

^b Aix-Marseille Université - CNRS, Laboratoire Chimie Environnement UMR 7376, 3 place Victor Hugo, 13331 Marseille, France

^c University of British Columbia, Department of Earth, Ocean and Atmospheric Sciences, Vancouver, British Columbia, Canada