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Background and Motivation

Slide 2

Improve current understanding of 
complex Source Zone Geometries
(SZGs) for DNAPL contamination

(Kueper et al., 2014)

Principles of DNAPL distribution in the subsurface

 DNAPL = Dense Non-Aqueous Phase Liquid

 ρDNAPL > ρWater 

 Less degradation  Longer persistant in groundwater (up to decades)

 Previous studies based on:

o Plume migration (dissolved phase)

o Simplied assumption (point/line/rectangular) for plume length estimation
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Previous Studies

(Poulsen and Kueper, 1992)

 Field Scale – Unsaturated Zone

 Mainly investigated phase distribution due to 

Release methods of DNAPL

 Summary:

o Overall migration of SZGs

- Release area at ground surface

- Source strength

- Angle of bedding

o Slow release promotes deeper migration
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Previous Studies

(Kueper et al., 1993)

 Field Scale – Saturated Zone

 Investigated initial-residual saturation

relationships and pool formation.

 Summary:

o Residual saturation is a direct function of 

initial saturation.

o Pool forms in laminations and lenses

Initial-residual saturation
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Previous Studies

(Luciano et al., 2009)

 Laboratory Scale – Saturated Zone

 Investigated the influence of hydraulic 

gradient on source migration with enhanced 

imaging analysis. 

 Summary

o Hydraulic gradient (i) promotes both 

downward and lateral movement of source 

migration.
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Previous Studies

(Luciano et al., 2009)

 Laboratory Scale – Saturated Zone

 Investigated the influence of hydraulic 

gradient on source migration with enhanced 

imaging analysis. 

 Summary

o Hydraulic gradient (i) promotes both 

downward and lateral movement of source 

migration.

Lateral movement
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Laboratory Experiments
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 2D Tank Setup [2]

o Detachable PMMA Tank 

o Dimension: 30 x 30 x 2 cm3

o Porous Medium -

 Natural Sand Fraction

 Sieved Size: 1 – 2 mm

o Surrogate DNAPL(HFE-7100)

dyed with red coloured dye.

Inlet Outlet

30cm

3
0

cm

Injection
location

[2] Engelmann et al., (manuscript in prep.)
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Laboratory Experiments

 Migration of DNAPL Source 

Zone

 Fully homogeneous

 Fully water saturated

 No hydraulic gradient (i=0)

 Injection head: Falling;

Head difference approx. 25cm
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Laboratory Experiments

 Migration started after overcoming 
the entry pressure.

 Non-uniform SZGs in full 
homogeneous soil system.

 Compaction was done manually by 
hand compactor with fixed height 
increment. 
Position of pools is strongly correlated 
with that height. 

 Migration of DNAPL Source 

Zone

 Fully homogeneous

 Fully water saturated

 No hydraulic gradient (i=0)

 Injection head: Falling;

Head difference approx. 25cm
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Laboratory Experiments

 Migration of DNAPL Source 

Zone

 Fully homogeneous

 Fully water saturated

 No hydraulic gradient (i=0)

 Injection head: Falling;

Head difference approx. 25cm

 Migration started after overcoming 
the entry pressure.

 Non-uniform SZGs in full 
homogeneous soil system.

 Compaction was done manually by 
hand compactor with fixed height 
increment. 
Position of pools is strongly correlated 
with that height. 
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Laboratory Experiments

 Migration of DNAPL Source Zone

Image aquired  by digital camera 
(cropped) [1] [8]

30cm 30cm

Source phase with binary image
(cropped) [1] [8]

t = 160s

Transient 
Stage

[1] Engelmann et al., (manuscript in prep.)

[8] Visit poster no. 167 for more on image processing and analysis

 Compaction was done by vibration with rubber hammer

 Pools tends to form during downward migration

 Non-uniformity of source zone prevails
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Laboratory Experiments

 Migration of DNAPL Source Zone

Image aquired  by digital camera 
(cropped) [1] [8]

30cm 30cm

[1] Engelmann et al., (manuscript in prep.)

Source phase with binary image
(cropped) [1] [8]

t = 2250s

[8] Visit poster no. 167 for more on image processing and analysis

 Compaction was done by vibration with rubber hammer

 Pools tends to form during downward migration

 Non-uniformity of source zone prevails
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Conclusion and Outlook

 Outlook:

o More attempts with repetitions to further understand the pool and residual formation

- How this distinct pool forms in laminations and lenses in homogeneous system?

- Why it gives different SZGs with each repetition? is there any pattern we can follow?

o Improvement of methods to measure the expected observations for phase detection. 

o Comparison and validation by numerical investigations

 Conclusion:

o Migration of source phase and their investigation are extremely uncertain processes even in the 

most suitable and controlled environment

o Strength of source controls the infiltration of DNAPL into porous media

o Pool forms even in homogeneous media with defined size ranges

o Current knowledge on how to characterize the shape of source zone need much more 

improvement
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Objective/Goal:

 Complex Source zone geometries (SZGs)  Effective SZGs 

 Effective SZGs  easier and better implementation for plume assessment (Lmax)
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Background and Motivation

(Engelmann et al., 2019)
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Source Zone Geometires (SZGs)
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Background and Motivation

 Residual Formation:

o Blobs & gangila between pores/pores throat due to 

snap-off and trapping mechanisms

o Typically occupies between 1% to 43% (pore space)

o Important factors –

• Initial-residual saturation relationship

• Release methods

• Pore geometry (aspect ratio)

• Viscosity & density ratio
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Source Zone Geometires (SZGs)

Background and Motivation

 Pool Formation:

o Capilary resistance by porous media

o Maximum pool height is given by: 

𝑯 =
𝑷𝒄
′′ − 𝑷𝒄

′

∆𝝆𝒈

Where, 
𝑃𝑐
′′ = capilary pressure at the base of pool

𝑃𝑐
′ = capilary pressure at the top of pool

Δρ = density difference between DNAPL and water
g   = gravity  

o Important factors –

• Bedding angle

• Interfacial tension

• Hydraulic gradient

• Preferrential pathways

(Kueper et al., 1993)

DNAPL

Water


