Temperature effect on the vaporization of organic groundwater contaminants considering multicomponent contaminants and dissolved natural gases

Alexander Schwardt, Andreas Dahmke & Ralf Köber

Institute of Geosciences Kiel University

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages Groundwater Quality 2019, September Liège

Content

- Introduction:
 - Subsurface temperature increases / thermal energy storage
 - Effects of thermal energy storage on contaminated sites
- Henry's law constants
 - Literature review
 - Laboratory measurements
- Temperature effect on gas phase formation in contaminated aquifers
 - PHREEQC calculations & laboratory experiments
- Conclusions

Gefördert durch: Bundesministeriu für Wirtschaft und Energie

Alexander Schwardt Institute of Geosciences Kiel University

ELMHOLTZ JOHANNES GUTENBERG ZENTRUM FÜR UMWELTFORSCHUNG

Subsurface temperature rise

- Reasons for temperature increases
 - Urban heat islands
 - Thermal Remediation
 - Thermal energy storage

"Aquifer-"/"Borehole-" Thermal Energy Storage (ATES/BTES)

- Beneficial to increase the share of renewable energies and to realize the energy transition
- High potential especially in urban areas
 - \rightarrow High heat/cold demand
 - \rightarrow existing infrastructure

Alexander Schwardt Institute of Geosciences Kiel University

HELMHOLTZ JOHANNES GUTENBERG

TES in urban areas

Suspected contamination areas in large cities

Behörde für Umwelt und Energie Hamburg

Senatsverwaltung für Umwelt, Verkehr und Klimaschutz - Berlin

- Effects on contamination expected due to temperature increase
- \rightarrow Thermal use of contaminated subsurface is so far not permitted!
- \rightarrow Heating of contaminated aquifer is established for remediation

Solution:
 Combination of TES and Remediation?!

Gefördert durch: Bundesministeriu für Wirtschaft und Energie

Alexander Schwardt Institute of Geosciences Kiel University

HELMHOLTZ JOHANNES ZENTRUM FÜR UMWELTFORSCHUNG

Advantages of combining TES and remediation

- Various synergetic approaches for the combination of TES and remediation of contaminated sites
 - better approval & acceptance regarding bio-geochemical changes
 - better energy and cost balance for the remediation of contaminated areas that might otherwise not be decontaminated
 - thermal energy for the heat market can be used for remediation
 - Avoidance of the use of potential drinking water areas
 - Better area availability and area reuse

Easier permission process

Gefördert durch: Bundesministeri für Wirtschaft und Energie Alexander Schwardt Institute of Geosciences Kiel University

HELMHOLTZ JOHANNES GUTENBER ZENTRUM FÜR UMWELTFORSCHUNG

Temperature-dependent processes in case of contamination

- Temperature changes of the contaminated subsurface leads to changes in e.g.
- <u>solubility</u> (Koproch et al. 2019),
- <u>mobility</u>,
- <u>degradation</u> (Metzgen et al. in prep/ Schwardt et al. in prep)
- gas phase formation

(Schwardt et al. in prep)

Research objectives of ANGUS⁺ (ended), ANGUS II, "ANGUS III" (planned)

Gefördert durch: Bundesministeri für Wirtschaft und Energie

Gas phase formation

- Influences on gas phase formation
 - Temperature
 - Composition of water / contaminants, dissolved components or gases (N₂, O₂, CO₂)
 - Henry's law constants
 Vapor pressure

temperature dependent

- Consequences of gas phase formation
 - Outgassing/devolatilization of pollutants
 - Migration of contaminants (potential hazard)
 - Changes of porosity/permeability of an aquifer
 - Remediation effect (combination of volatilization and soil air extraction)

Objectives

- Are available data appropriate for predictions about gas phase formation?
 - Literature review on Henry's law constants of volatile organic compounds (VOC)
 - Measurements of Henry's law constant to close data gaps of several compounds
- Influence of **dissolved atmospheric gases and temperature** on gas phase formation in case of a contamination with VOCs
- Influence of temperature and Multi-component NAPL (non aqueous phase liquid) composition on temperature induced gas phase formation
 - PHREEQC calculations
- Development of a new laboratory experiment to determine the gas volume resulting from a temperature increase of contaminated water

Gefördert durch: Bundesministeri für Wirtschaft und Energie

Theoretical background

- Henry's law The concentration of a dissolved gas is directly proportional to the partial pressure of the gas above the liquid.
- Henry's law constant: $H = \frac{C_g}{C_{ag}}$
- Vapor pressure
 - Miscible fluids:
 - Immiscible fluids:

 $p_{total} = \sum x_i p_i$ $p_{total} = \sum p_i$

- H Henry's law constant [-]
- C_g Concentration in gaseous phase
- C_{aq} Concentration in aqueous phase
- p_i Vapor pressure of compund i
- x_i Mole fraction of compund i
- \geq Dissolved components or gases like N₂ act like miscible fluids
- For mixtures of immiscible fluids (e.g. PCE + Water), the vapor pressures must be added, reducing the boiling point

Co-boiling temperature

Compound	bp. [°C]	Co-bp [°C]
Water	100	-
PCE	121	88
TCE	87	73-74
PCE+TCE	-	86

Gefördert durch: Bundesministeri für Wirtschaft und Energie

Henry's law constants – Literature review

Further measurements of H are necessary

Measurements of Henry's law constants

- EPICS procedure (Equilibrium Partitioning In Closed Systems) by Gossett (1987)
 - 4 pairs of two equal bottles V = ~100 mL, filled with different amount of water (20 mL/80 mL), but equal mass of the compound, GC-Analysis of the gas phase
- 17 substances with insufficient data will be studied between 10 & 90 °C
- Fit of measured data: $\ln(H) = A \frac{B}{T} + C \ln(T)$ (Heron et al., 1998)

Substances which will be measured

Carbon Tetrachloride 1,1-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Tetrachloroethylene

1,1,2,2-Tetrachloroethylene Vinyl Chloride **1,1-Dichloroethylene** 1,2-trans-Dichloroethylene **Trichloroethylene Tetrachloroethylene** Ethylbenzene Chlorobenzene p-Xylene o-Xylene m-Xylene

Gefördert durch: Bundesminister für Wirtschaft und Energie Alexander Schwardt Institute of Geosciences Kiel University

MHOLTZ JOHANNES GUTENBERG INTRUM FÜR UNIVERSITÄT MAI WWELTFORSCHUNG

Measurements of Henry's law constants

- Good fit of measured H to literature data up to 40 °C
- for PCE & TCE, measured H are lower than the average of literature data at higher temperatures

Methods: PHREEQC calculations

- Phreeqc v3: Program for aqueous geochemical equilibrium calculations (by Parkhurst & Appelo)
- Addition of thermodynamic data (solubility by Koproch et al. (2019)/Henry's law constants by Schwardt et al (in prep)) to the database (phreeqc.dat) for the examined compounds (e.g. PCE, TCE etc.)

Method of Calculation:

- Heating up of 1 kg pure water from 10 °C to up to 100 °C
- Pressure: 1 atm (constant); (gas-)volume: variable
- The calculations were performed with dissolved NAPL or NAPL phases
- Dissolved atmospheric gases (e.g. N₂/O₂/CO₂) were varied, because there are huge variations in dissolved gases in natural aquifers (Lüders et al., 2016)
 - total partial pressure up to 1 atm

Results: PHREEQC calculations – Dissolved atmospheric gases

Influence of dissolved atmospheric gases on single-phase NAPL

- The boiling point is not influenced by $N_2/O_2/CO_2$ at groundwater typical masses
- With increasing N₂, the temperature at which a gas phase is formed decreases
- Due to its higher solubility, dissolved CO₂ has a greater influence on the resulting gas volume than dissolved N₂

Depending on N₂-Partial pressure the resulting gas volume can be increased by --• atm N2 10 times and more

Gefördert durch: Bundesministeriur für Wirtschaft und Energie Alexander Schwardt Institute of Geosciences Kiel University

----0,9 atm N2

Results: PHREEQC calculations – Multi-component NAPL

PHREEQC-Calculations (PCE + Dichloromethane (DCM))

- the co-boiling point of a Multi-NAPL system is controlled by the molar fractions of the involved components
- The higher the fraction of the less volatile compound, the higher the boiling temperature of the mixture

Even a 10% fraction of PCE in a DCM-PCE-NAPL leads to a significant increase of the co-boiling point (~22 K)

Gefördert durch: Bundesministeriu für Wirtschaft und Energie Alexander Schwardt Institute of Geosciences Kiel University

HELMHOLTZ ZENTRUM FÜR UMWELTFORSCHUNG

Methods: Batch experiments

- Gas tight stainless-steel column (40 x 5,5 cm)
- Glass beads & shaking the column contributes to distribute the NAPL phase finely and to establish equilibrium
- NAPL phase: a) TCE 0,05 mol/l; b) PCE+TCE (0,05 mol/l each)
- Water equilibrated at 10°C with synth. air (0,8 atm N₂, 0,2 atm O₂), NAPL was added, the column closed and then heated to 25, 40, 55 & 70 °C
- Heating the completely filled column leads to gas phase formation in the column, displacing the equivalent volume of solution
- The gas volume was quantified by refilling the resulting gas space in the column with a known volume of water

Results of the batch experiments

- Experiments with TCE (phase) as single component
- Measured gas volumes at 25, 55 und 70 °C lie within the calculated range of expectations
 - wide range of expectation for experiments with TCE phase at 70 °C due to Henry's law constants (H) and temperature close to the co-boiling point of TCE+H₂O (~73 °C)
- Experiments with TCE (dissolved) and multi-component experiments (PCE+TCE phase)
- Measured gas volumes showed a good fit to the calculations

The PHREEQC calculations are verified

Determination of the resulting gas phase volume is possible even if no or poor thermodynamic data are available

Conclusions I

- The existing H database of most contaminants at T > 50 °C leads to a large uncertainty range in the estimation of gas phase formation (a factor 4 between min. und max. gas volume when heating 1 L of water with 0,05 mol/l TCE phase from 10 to 70 °C)
 - An improvement of the H database is necessary for the risk assessment of hightemperature heat storage systems and efficiency of remediation projects in contaminated areas
 - Measurements of H were already started, 17 substances between 10 and 90 °C will be studied

Gefördert durch: Bundesministeriu für Wirtschaft und Enorgie Alexander Schwardt nstitute of Geosciences Kiel University

HELMHOLTZ JOHANNE ZENTRUM FÜR UI UMWELTFORSCHUNG

Conclusions II

- (HT-) TES temperatures can lead to a volatilization of pollutants and thus to a reduction of the pollutant mass in the aquifer
- Composition of dissolved atmospheric gases in the groundwater is of importance at temperatures below the co-boiling point
- For the assessment of an environmental hazard through outgassing of pollutants or for the evaluation of a remediation efficiency, the composition of dissolved atmospheric gases in groundwater should be analysed within the framework of preliminary investigations
- For multi-components pollutants, the compositions of the contamination is essential to determine the co-boiling point and thus the exact gas phase formation
 - > A shift of the co-boiling point by several degree Celsius is possible
 - TES can lead to a partly or even complete devolatilization of the NAPL (and thus leading to a remediation of the source of contamination)
 - Knowing the exact (co-)boiling temperature can significantly decrease the energy demand for remediation

Thank you for your attention!

Gefördert durch: Bundesministeriu für Wirtschaft und Energie

Alexander Schwardt Institute of Geosciences Kiel University

HELMHOLTZ JOHANNES GUTENBERG ZENTRUM FÜR UNIVERSITÄT MAN UMWELTFORSCHUNG UFZ

