#### Spatio-Temporal Feedbacks Between Soil Contamination and Biotic Responses in LNAPL Zones Undergoing Natural Source Zone Depletion

Matthew Morgan | Research Scientist – CSIRO Contaminants and Biotechnology Program

GQ19, Liège, Belgium. 12 September, 2019

Geoffrey Puzon; Melanie Bruckberger; Matthew Taylor; Jian-Wei Lui; Shoko Okada; Tom Walsh; Trevor Bastow; John Raynor; Greg Davis



www.csiro.au

# Legacy contamination site

- Largely weathered petroleum hydrocarbon contaminants
  - > 50 years old in many cases
- LNAPL subsurface contaminants consisting of Jet fuel/Kerosene, diesel and crude oil
- Previous work on active remediation methods (i.e. air sparging, biosparging and multiphase extraction)
- Currently investigating Natural Source Zone Depletion (NSZD) processes and details of the microbial function and activity in NSZD





# Aim & Approach

- Identify direct and indirect evidence of natural attenuation of soil contaminants by microbial communities through analysis of functional diversity, biological activity, metabolic pathway analysis, and detection of degradation products
- Who is there?
  - Community composition 16S metabarcoding, shotgun metagenomics
- What can they do?
  - What genes and pathways are present DNA Shotgun Metagenomics
- What are they doing?
  - Realised functional profile: Proteomics, Metabolomics
- Integrate multi-omic signatures in order to model interactions and predict community metabolic outcomes
  - Transfer generic outcomes to other sites, with appropriate consideration of site and environmental variation.



# Soil core sampling

- From each core 4 depth sections were chosen
- 1. Top section (unsaturated minimal contamination)
- 2. Water Table / Capillary fringe
- 3. Mid section/ high TPH (saturated and contaminated)
- 4. Bottom (saturated and largely uncontaminated)
- Cores were sterilely cut into 0.05m sections, sealed in tins and placed on ice for transport
- In the lab, cores were subsamples for chemical analysis (TPH) and molecular analysis (metagenomics, proteomics and metabolomics)
- All samples processed in triplicate (DNA)





# **TPH profile within cores**

#### GC FID Profiles



#### **Contaminant Fingerprints**





## **Community comparisons**

- Inferred taxonomic composition and community structure compared across cores and depths
- High similarity of biological replicates
- Significant effects of contaminant and depth on community composition
- Strong separation: TPH vs no TPH
- Top samples relatively similar to each other and to Background
  - Jet fuel top section samples distinct from others





## **Inferred Functional Potential**





- Similar structure of functional potential and taxonomy across cores and depths
- Similarity of Top section and Background samples



#### **Proteomics**

- Protein extracted from core samples
  - Significant challenge
  - Jian-Wei Lui
- Gel shows good extraction of proteins from all contaminated samples and background
- Proteins were excised from the gel and run on ThermoFisher Orbitrap Fusion





#### **Proteomics analysis**

- Created database derived from metagenome predicted ORFs
  - 6,575,581 predicted open reading frames
  - 6,560 total proteins identified
  - 1,899 annotated to a known function
- Many unknown function or provenance
  - Can still analyse distribution of "anonymous" proteins to discover candidate biomarkers for further characterisation



# **Realised functions**

- Normalised protein expression across cores and depth (no biological replication)
- Significant effects of contaminant and depth on community functional composition
- Top section samples more similar to contaminant samples than to Background
  - Functional potential similar to Background
  - Realised functions more similar to other contaminated soils





#### **Proteomics Results**

- High level results largely consistent with inferred functional potential in contaminated samples
  - Confirmed methanogens present and active in contaminated soils
  - Methanogenesis proteins highly expressed in contaminated samples, including coenzymeF420
  - Proteins from degradation pathways (e.g. naphthalene and toluene) are active, and more highly expressed in contaminated soils than expected from metagenomic abundance
- Different patterns in distribution of potential and realised functions in Top section samples
  - Chloroplast and photosystem I & II proteins and transporters highly expressed in Background samples (especially Top section).
  - Not detected in Top section contaminated samples
- Active taxa and pathways performing highly expressed functions may not be highly abundant in metagenomics data



#### **Discriminant metabolites**



 23 of 145 identified metabolites are significant in discriminating the samples including degradation products of naphthalene (salicylic acid) and crude/diesel (4-hydroxybenzoate)

| Analyte ID put.               | d.value | stdev      |
|-------------------------------|---------|------------|
| Phenylacetic acid-TMS         | 486.29  | 4493500000 |
| Thymine-2TMS                  | 298.67  | 1650600000 |
| Uracil-2TMS                   | 293.27  | 4770100000 |
| Triethanolamine-3TMS          | 172.43  | 4.18E+11   |
| Methylsuccinic acid-2TMS      | 172.1   | 645280000  |
| Lysine-4TMS                   | 160.61  | 46876000   |
| 3-Methylglutaric acid-2TMS    | 157.28  | 153530000  |
| Phenylalanine-2TMS            | 117.03  | 8 8.89E+10 |
| 2-Aminoethanol-3TMS           | 107.88  | 2.05E+12   |
| Maltose-meto-8TMS1            | 102.95  | 9.79E+12   |
| Nicotinic acid-TMS            | 98.417  | 2920500000 |
| Adenine-2TMS                  | 97.405  | 404130000  |
| 5'-Methylthioadenosine-2TMS   | 90.607  | 23706000   |
| 4-Aminobutyric acid-3TMS      | 89.263  | 4.10E+10   |
| Tyramine-3TMS                 | 83.113  | 578450000  |
| Adenosine-4TMS                | 82.036  | 6 4.39E+10 |
| Putrescine-4TMS               | 78.557  | 1911500000 |
| Palmitic acid-TMS             | 74.468  | 3.78E+12   |
| Inositol-6TMS2                | 72.58   | 5.00E+11   |
| Sucrose-8TMS                  | 70.464  | 1.57E+13   |
| 3-Hydroxyisobutyric acid-2TMS | 63.502  | 1.24E+13   |
| Salicylic acid 2TMS RT15.605  | 60.329  | 625230000  |
| 4-Hydroxybenzoic acid-2TMS    | 55.506  | 2475100000 |



#### **Summary**

- Developed new protocols for multi-omic extractions from samples with high contaminant levels from disparate sources
- Preliminary analyses are establishing relationships within and between omics data layers
- Direct and indirect evidence of active biological attenuation pathways
- Different patterns in potential and realised functions demonstrate value of realised function assessment for integrating data layers into metabolic models



# **Ongoing Work**

- Longitudinal sampling to support temporal analyses
- Characterising MAGs
  - Genome-scale metabolic modelling for species and communities
  - Agent-based dynamic models versus steady-state
- Integrated multi-omic pathway analysis
- Inform modelling to understand how community dynamics relate abundance and activity
  - Potential for modulation and manipulation



# Thank you

Matthew Morgan

CSIRO Land and Water Research Scientist Phone: +61 2 6246 4172 Email: matthew.morgan@csiro.au

LAND AND WATER www.csiro.au



## **Inferred taxonomic composition**

- Taxonomy explored at multiple resolutions
  - Class is relatively conservative
- Dominant bacterial taxa relatively similar across cores and depths
- Similarity of biological replicates
- Strong separation of TPH vs no TPH largely related to Archaeal methanogens present in contaminated samples







# Pathway analysis

- KEGG pathways inferred for 23 significantly different compounds
- Seven compounds identified in 'microbial metabolism in diverse environments' pathway ID





#### Phenylalanine metabolism – good correlation with two metabolites for sample 116





## 4-hydroxybenzoate

- Breakdown product of p-cresol
- P-cresol is found in diesel and crude oil

https://www.chemicalbook.com/Ch emicalProductProperty JP CB5453 502.htm https://pubs.acs.org/doi/10.1021/a c00130a021





#### **Discriminant Taxa**



CSIRC

#### **Discriminant Functional Potential**



## Methanogenic taxa and proteins identified

- Example from one • protein fraction of Core D6 (Diesel contaminant)
- *Methanosaeta* proteins • are highly abundant in diesel samples
- But not abundant in metagenomics data





Species



