Nanoparticle transport in heterogeneous column experiments: the use of magnetic techniques

Michael Riley and John Tellam

Publication:

Riley, M. S., Suttie, N., Stevenson, C. T., Tellam, J. H. (2019) in Colloids and Surfaces A

Masters projects:

Finlay Campbell; Yifei Gu; Richard Parkinson; Clare Williams; David Burns; Graham Phillips

Engineering and Physical Sciences Research Council

Engineered nanoparticles (ENPs) in groundwater

- ENPs present in many everyday products
- certain to transfer to groundwater
- concerns over potential toxicity

The challenge

Identification and quantification of processes governing ENP migration

Engineered nanoparticle transport in rock

Processes might include:

- Advection
- Dispersion
- Physical Straining
- Attachment (irreversible)
- Attachment (reversible)

Potential model parameters:

- Effective porosity
- Dispersivity
- Straining coefficients
- Attachment rates
- Detachment rates
- Attachment capacities

Problems

- Non-unique parameter sets for a mathematical model (model equivalence)
- Many alternative mathematical models
- Heterogeneity of attachment processes

Magnetic Susceptibility Monitoring and Modelling (MSMM)

• Non-invasive system for monitoring and modelling column experiments

 \rightarrow Multiple "breakthrough curves" within the column

- Magnetic particles
- A model fitting technique
- Imaging potential

Magnetic susceptibility

Volume susceptibility (χ_v or κ) =

Magnetisation Strength of applied field

[Dimensionless]

Sufficiently small magnetite NPs are *superparamagnetic*

In randomly arranged groups of identical superparmagnetic NPs, the net susceptibility is proportional to the number of NPs present

BUT

The susceptibility of NPs in suspension is greater than that of NPs that are not free to rotate

Experimental Rig

Instrument Response Function

Instrument Response Function

Modelling Strategy

- Select the mathematical model to be tested
- Simulate the transport experiment using the model
- Simulate the measurement process based upon the modelled concentrations
- Compare the results with the experimental data

Homogeneous column – no particle retention

Injection phase (10 nm diameter magnetite ENPs)

Column 2 - Model vs Experiment 10 to 100 mins

Complex column with strong particle retention

Complex column with strong particle retention

Complex column – strong particle retention

Measurements Modelled measurements Fluid phase

Strained phase Irreversibly attached phase Total of retained phases

Complex column – strong particle retention

Summary

Magnetic susceptibility monitoring and modelling allows us to "look inside" an experimental column, which

• produces exceptionally large data sets

and has the potential to:

- reduce the problem of model equivalence
- identify column heterogeneity
- quantify processes in heterogeneous columns

